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SUMMARY 

This report summarizes the results of a three year study sponsored by the Air Force Office of Spon- 
sored Research under contract No. F49620-92-J-0496. The enthusiastic technical and administra- 
tive effort of Drs. Spencer Wu and Brian Sanders of AFOSR are warmly acknowledged. 

This project has involved analytical and experimental research across a family of structural me- 
chanics and control problems. Our effort has been mainly addressed to four sets of research issues: 

1. Solution and Validation Methodology for Simulation of Nonlinear Structural Systems 
See Attachments [2,3,14]. 

2. NonlinearMechanics and Control of Flexible Structural and Robotic Systems 
See Attachments [4-8,14-18]. 

3. Representation of Finite Rotations in 3 and N-Dimensions: Applications in Mechanics 
See Attachments [9-11,13]. 

4. Radial Basis Approximation Methods and Associated Optimization Algorithms 
See Attachments [12]. 

In addition to the above four sets of research issues, we have also engaged in significant re- 
search on ancillary topics which are documented in the references listed in Attachment 1. The 
above research spans a broad set of theoretical/conceptual [6,7,9-11,13-18], computational [2- 
4,12,14], and hardware experimental [8] research topics. 

In the text of this report, we present a brief guided tour of the results as a preamble to the nine- 
teen attachments which present the details of the research methodology and results. 
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1.0 Introduction 
This report presents results achieved during a three year research project at Texas A&M 

University sponsored by AFOSR under contract F49620-92-J-0496 P0001. The work was carried 
out by the Principal Investigator (J. L. Junkins) and a team of mainly Ph.D. candidate co-research- 
ers. As is evident from a brief review of the attachments, a substantial volume of research results 
have emerged from this work. Given the volume of results, we decided to overview only the main 
features of the results in the text, and make the technically more detailed attachments the heart of 
our report. 

The level of effort required to produce the attached results represents approximately five 
man-years of total effort. Since only half that level of effort was funded by contract F49620-92-J- 
0496, it is evident that the matching State of Texas support (Advanced Technology Project Num- 
bers 999903-231 and 999903-232) has resulted in an augmentation of this project which consider- 
ably leveraged the AFOSR support. 

This report documents our results in four broad categories: 
Solution and Validation Methodology for Simulation of Nonlinear Structural Systems 
Nonlinear Mechanics and Control of Flexible Structural and Robotic Systems 
Representation of Finite Rotations in 3 and N-Dimensions: Applications in Mechanics 
Radial Basis Approximation Methods and Associated Optimization Algorithms 

Attachment No. 1 lists 19 refereed publications that have been the result of this work during 1993- 
1996, and also lists the graduate students that have been supported under this contract. In addition, 
two additional students and a post-doctoral researcher have been supported under support of State 
of Texas support (Advanced Technology Project Numbers 999903-231 and 999903-232) perform- 
ing ancillary research. 

The discussion below overviews selected aspects of the contribution in each of the above 
categories; the details are covered in the attachments. 

2.0 Selected of Technical Results 

In Attachment [2,3], we present some very significant results from this research project; we 
have developed methodology for validation of solution accuracy of nonlinear dynamical response. 
This methodology applies to a wide class of physical systems modeled as systems of ordinary, par- 
tial, or integro differential equations and associated boundary condition operators. It permits the 
analytical construction of exact solutions (along with rigorously consistent, small perturbing force 
functions), which neighbor given approximate numerical solutions. We show that is is possible to 
construct these special case exact solutions in spite of the fact that the original initial value problem 
cannot be solved exactly in closed form. The research reported in these papers consist of basic an- 
alytical results and a careful proof-of-concept experiments for several example systems described 
by ordinary and partial differential equation systems. For a wide class of nonlinear dynamical sys- 
tems described by ordinary differential equations, we have developed an algorithm and software 
that represent a standardized approach which promises to be of broad utility. For the class of dis- 
tributed parameter systems, we have worked several examples and established proof of concept, 
however, we have not found it feasible to construct a general purpose software package for this 



case Shown below in Figure 1 is a slide format result abstracted from Attachment 3; we depict the 
error surfaces between a family of approximate response solutions compared to an exact solution we 
constructed using the method of Attachments [1,2]. 

Figure 1. 

Structural Mechanics: Nonlinear Response Methodology 
A ttiffnrons Means for Solution Validation - .Tunkins (Texas A&M) 

• A method for construction of exact benchmark solutions neighboring available aproximate solutions. 
• Provides capability to determine exact special case space-time solution errors of numerical methods. 
• Permits rigorous validation of numerical methods => assess accuracy limitations of methodology. 
• Permits optimal tuning of a given numerical method (e.g., select step size, FEM grid, order, etc). 
• Permits rigorous tradeoff studies for evaluating merits of competing numerical methods. 

Reft.: Junldns, J. and Lee, S-, "Validation of Finite Dimensional Approximation Solutions for Dynamics of Distributed Parameter Systems," 
Adv.tntheAsmm.ScUnces,Vo\.t5, pp. 2089-2111 (1994) .     .„.    v„, . v„ , .„ 403-414(19941 

Lee, S., and Juiudns, J.. "Construction of Exact Benchmark Problems for Dynamical Systems," Shock and V&rafKm, Vol. 1, No. 5, pp. 403-414 (lKM). 
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In Attachments [4,5,15,18], we present a substantial volume of new material on stability and 
control of multi-body structural systems and, in particular, explore some of the conceptual, mathe- 
matical, and numerical issues in underlying cooperation between two or more autonomously con- 
trolled manipulators maneuvering a common paylod or object. For the typical case of redundant 
actuation, there are an infinity of controls to affect essentially the same dynamical motion, however, 
each control policy and resulting control forces represent different constraint loading on the struc- 
ture. A familar example is two or more humans manipulating a heavy object such as a soffa or a pool 
table; it is apparent that, due to actuator redundancy, the same rigid body trajectory can be acheived 
by an infinity of actuation forces, but most of these control policies result in the actuators 'fighting' 
each other and imposing unnecessary constraint loads on the payload (and frustration of the actua- 
tors). By defining an appropriate optimization policy, it is possible to minimize the norm of the con- 
straint forces, for example, and thereby cause the manipulators to cooperate in carrying out the 
maneuver. In Attachments [4,5], we develop a conceptual and mathematical basis for formulating 
cooperative optimal control strategies and study the efficacy and robustness of this approach through 
several simulation studies. Recently, Agrawal and his student Gary Yale at the Naval Postgraduate 



School have successfully implemented this idea experimentally in collaboration with the Principal 
Investigator, and have verified that the approach has practical validity as well as theoretical ele- 

gance. 

In attachments [6], we extend the classical linear quadratic regulator (LQR) to admit ine- 
quality constraints on the control variables. This modest extension of the LQR is very significant, 
because one of the classical shortcomings of the LQR is that there was no apriori guarantee that 
the opt control derived was in fact physically realizable. A numerical example is given in [6], to 
illustrate that the algorithm obtained is indeed numerically feasible. 

In Attachment [7], we present an analytical result; we introduce a novel theoretical path for 
asymptotic stability analysis for systems wherein the chosen Lyapunov function is negative semi- 
definite We use the new methodololgy to show that a commonly applied output feedback control 
law (for controlling a symmetric four appendage structure) guarantees asympotic stability of all in- 
finity of the anti-symmetric- in-unison modes, however, it does not guarantee the stability of the 
infinity of anti-symmetric- in- opposition modes which are both unobservable and uncontrollable. 

Attachment [8] presents analytical, computational, and experimental results for near mini- 
mum-fuel and near-minimum-time control of the ASTREX structure at Phillips Laboratory. The 
results in [8] establish the validity and effectiveness of our overall approach, however some exper- 
imental anomalies were revealed due to several constraints imposed by the present sensor/actutor 
system development. 

In attachments [9-11,13], we present another significant result of our research that we ex- 
pect to have important consequences. We have been able to greatly extend and generalize a fun- 
damental classical result known as the Cayley Transform, to establish a revolutionary method for 
parameterization of NxN proper orthogonal matrices. These results permit one to view the evo- 
lution of an NxN orthogonal matrix in terms of a minimal [N(N-l)/2-dimensional] set of 'orienta- 
tion parameters' that are closely related to the quaternions or Euler Parameters famous for the 
usual 3x3 orthogonal direction cosine matrix case. Thus the evolution of an NxN orthogonal ma- 
trix can be qualitatively conceptualized as the motion of a generalized rigid body reference frame. 
Since the spectral decomposition of all NxN symmetric positive definite matrices (which abound 
in mechanics!) is a similarity transformation involving the orthogonal NxN matrix of eigenvectors 
and the N positive scalar eigenvalues, it is apparent that nonsingular minimal parameter descrip- 
tions of orthogonal matrices immediately enables minimal parameter descriptions of a general pos- 
itive definite N*N matrices. Several applications are considered in the references that illustrate the 
utility and support the conclusion that these results are fundamental in nature and will have a broad 
impact. 

In attachment [12], we present a method for converting a general functional optimization 
problem into a nonlinear programming problem by prameterizing the unknown control using radial 
basis functions (RBFs). An adaptive RBF approximation method is introduced wherein an initially 
small number of basis functions is gradually increased with the center locations being decided 
based upon the sensitivity of the trajectory to variations of the weights on the currently existing set 
of RBFs. The method adapts both the center locations and the local sharpness of the RBFs, and 
uses the converged result from the previous iterations to initiate the subsequent iteration with an 



accurate starting iterative which satisfies the terminal boundary contions. The convergence and 
efficacy of the method is studied through two examples (an optimal trajectory problem and an op- 
timal aerodynamic shape problem) fopr which the optimal solution has been previously determined 
in the literature. The method is also compared to a non-adaptive RBF approach and the results 
clearly establish the validity and attractiveness of this approach. 

In attachment [14], we introduce a potentially revolutionary method for simulating dynam- 
ics of nonlinear multi-body systems wherein a configuration-variable mass matrix occurs. In con- 
ventional algorithms, computing acceleration requires inversion of this configuration-variable 
mass matrix which directly limits the speed and precision, and ultimately, the practical dimension- 
ality of multibody simulations. It also means that so-called order N methods are not really order 
N when considering the dynamics of nonlinear flexible multibody systems.  The new method in- 
troduced involves a unique coordinate transformation to a new coordinate system which maps the 
instantaneous mass matrix into an identity matrix. This is not done by solving a local algebraic 
eigenvalue problem via conventional solvers, but rather new differential equations are derived that 
inherently generate the instantaneous diagonalizing transformation. The validity and utility of the 
algorithm is proven conclusively in [14], including a low dimensioned application, and in [19], we 
apply it to a 14th order dynamical model for the Freewing Scorpion UAV. These analytical and 
numerical studies prove the validity and show that this formulation has broad applicability in non- 
linear multi-body dynamics. 

3.0 Conclusions 
It is evident that the research progress is excellent on many fronts. We have achieved sig- 

nificant analytical progress and in several important instances have progressed from introduction 
of a basic concept, to analytical studies, and proof-of-concept conputational and hardware demon- 
strations, within this three year effort. Of course, this progress has been achieved in large measure 
due to historical investments of AFOSR resources in support of our effort to develop the analytical 
and experimental foundation upon which this progress rests. It is also significant that the ancillary 
financial support obtained from Texas Advanced Research Project grants has greatly accelerated 
our work and thereby leveraged the AFOSR investment. It is of special significance to note that 
five exceptional graduate students and a postdoctoral researcher have been supported during this 
project and three of the four Ph. D. students have successully defended their dissertations. Thus, 
quite apart from the technical fruits of this research project, the development of outstanding young 
engineers and scientists has been significant indeed. 
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Construction of Benchmark 

Problems for Solution of 

Ordinary Differential 

Equations 

An inverse method is introduced to construct benchmark problems for the numerical 
solution of initial value problems. Benchmark problems constructed in this fashion 
have a known exact solution, even though analytical solutions are generally not 
obtainable. The process leading to the exact solution makes use of an initially avail- 
able approximate numerical solution. A smooth interpolation of the approximate 
solution is forced to exacth satisfy the differential equation by analytically deriving a 
small forcing function to absorb all of the errors in the interpolated approximate 
solution. Using this special case exact solution, it is possible to directly investigate the 
relationship between global errors of a candidate numerical solution process and the 
associated tuning parameters for a given code and a given problem. Under the as- 
sumption that the original differential equation is well-posed with respect to the small 
perturbations, we thereby obtain valuable information about the optimal choice of the 
tuning parameters and the achievable accuracy of the numerical solution. Five illus- 
trative examples are presented.    © 1994 John Wiley & Sons, Inc. 

INTRODUCTION 

We consider the initial value problem for linear 
or nonlinear ordinary differential equations. In 
general, we do not know the true solution and 
any numerical method gives us an approximate 
solution; the numerical solutions generally con- 
tain two sources of error, round-off and trunca- 
tion (Gear, 1971). We must somehow evaluate 
the accuracy of a given approximate solution, 
typically without knowing the true solution. The 
most common way of assessing the true error of 
a numerical solution is to reduce some tolerance 
parameter, integrate again, and compare the 
results (Hairer et al., 1987; Shampine, 1987). Al- 
though more sophisticated error analyses can be 
conducted, there is no general way to absolutely 

guarantee the final accuracy of the solutions. 
This does not preclude obtaining practical solu- 
tions for most applications, but it remains very 
difficult to answer subtle questions. 

Many numerical methods are available for 
solving initial value problems. Early numerical 
methods were merely fixed step size implementa- 
tions and these methods were straightforward to 
implement, but the results were often inconclu- 
sive. In the 1960s, research on numerical meth- 
ods for highly nonlinear initial value problems led 
to adaptive methods that could automatically 
vary the step size and/or the order of the method 
to match a user-specified local error tolerance at 
each step. This work led to the current genera- 
tion of numerical methods. Due the presence of 
round-off error, it is common to find that accu- 

Received October 10, 1993; Accepted April 25, 1994. 
Shock and Vibration, Vol. 1, No. 5, pp. 403-414 (1994) 
© 1994 John Wiley & Sons, Inc. CCC 1070-9622/94/050403-12 
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racy improves until step sizes or tolerances are 
decreased below some critical value; the accu- 
racy then degrades while solution costs increase 
(Gear, 1971; Shampine, 1974). Shampine (1974, 
1980) pointed out that a typical adaptive code 
will not quit when impossible accuracies are 
specified. He also reported that the standard 
ways to assess true errors may lead to wrong 
conclusions even using the best codes available 
at that time. Shampine (1974) considered a ma- 
chine dependent limit on the step size and one on 
the local error tolerance, and he suggested a way 
of automatically selecting an initial step size that 
appears to be reliable and reasonably efficient 
(Shampine, 1978). Enright (1989) pointed out that 
the relationship between the accuracy obtained 
and the specified tolerances is generally ex- 
tremely sensitive to both the problem and the 
method. In particular, for Runge-Kutta methods 
with interpolants, he proposed an error and step 
size control mechanism based on monitoring and 
controlling the defect of a continuous approxima- 
tion rather than the local error of the discrete 
approximation. 

In view of the historical and recent develop- 
ments, we observe that the theory of differential 
equation solvers is far from complete, so that the 
understanding of a given code's performance in- 
variably requires a study of experimental results. 
Hull, et al. (1972) and Krogh (1973) provided two 
outstanding collections of test problems for this 
purpose. These test problems have been used in 
the development and testing of many codes and 
can be regarded as standard benchmark prob- 
lems for initial value problem solvers. Whenever 
we know the true solutions of a test problem, 
however, we can investigate the relationship be- 
tween the true, or global error and the tuning 
parameters of a given code (e.g., step size, local 
error tolerance, order, etc.). The relationship be- 
tween   the   behavior   of  an   algorithm   on   a 
benchmark problem and the behavior of the algo- 
rithm on a problem of interest is difficult to estab- 
lish. Because the problem of interest is almost 
never exactly solvable, we need a means to es- 
tablish a customized benchmark problem that is a 
close neighbor of any given problem of interest. 
We introduce here a broadly applicable inverse 
method that constructs a neighbor of a given nu- 
merical approximate solution; the neighboring 
problem does in fact exactly satisfy the original 
differential   equations   (with   a   known,   small 
forcing function) and serves as an excellent 
benchmark problem. More specifically, we pre- 

sent a broadly useful approach to construct a 
benchmark problem near the problem of interest 
in a particular application. By virtue of the fact 
that the benchmark problem is a customized near 
neighbor of the problem of interest, we show 
that   numerical   convergence   studies   on   the 
benchmark problem are directly useful in algo- 
rithm selection, tuning, and accuracy validation. 

The difficulties mentioned earlier result from 
not knowing the true solution. What happens if 
we are able to construct a problem-dependent 
"exact" benchmark problem? First we can eas- 
ily investigate the true error/parameter relation- 
ship and find the limiting precision and associ- 
ated values of critical parameters of a given 
code. Second, the problem of how to assess 
global error vanishes automatically. Finally, we 
have an absolute standard to find which method 
is most suitable for an important member of our 
particular family of problems. The sensitivity of 
the   accuracy/tolerance   relation   of   a   given 
method is primarily a result of the heuristics used 
to monitor the local error and control the step 
size. If we do not know the true solution, then it 
is very hard to assess which method is the best 
for a class of problems because of the high sensi- 
tivity of accuracy to variations in step size con- 
trol logic. The remaining and most critical ques- 
tion is:  How useful is the convergence and 
accuracy information obtained for the exactly 
solved benchmark problem, in regard to drawing 
conclusions for the (neighboring) original prob- 
lem? It is important to recall that the benchmark 
problem includes a regular perturbation to the 
original problem.  If the perturbation is small 
enough, it is to be expected that all derivatives 
will be close for the two problems and conse- 
quently, the behavior of standard discrete vari- 
able methods will be similar both with respect to 
accuracy and stability. It is certainly true that 
there are open questions on this issue needing 
further investigation; however, by constructing a 
family of neighboring benchmark problems, it is 
usually possible to judge the size of the neighbor- 
hood in which the convergence and accuracy 
properties are relatively invariant with respect to 
the perturbation. Several applications presented 
herein provide strong evidence supporting the 
practicality of this approach. 

In this study we propose a method to con- 
struct a benchmark problem that is a close neigh- 
bor of a given approximate solution of the origi- 
nal problem. The benchmark problem is 
constructed so that it satisfies exactly the differ- 
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ential equation but with a known, usually small, 
time varying forcing function. We can investigate 
the global error/parameter relationship of the 
benchmark problem with the true solution in 
hand. Under the assumption that the original 
problem is well-posed with respect to small per- 
turbations, we have valuable information about 
the optimal parameters and the accuracy of the 
numerical solution. Actually the stability as- 
sumption is not so severe because any numerical 
method needs it more or less to obtain reliable 
solutions. Also, by introducing several neighbor- 
ing approximate solutions with initial condition 
and parameter variations, then repeating the en- 
tire process, it is possible to experimentally es- 
tablish insight on the size of the region over 
which the convergence properties are invariant. 

Lee and Junkins. (1993) presented two com- 
puter codes for first order and second order sys- 
tems of differential equations, when the classical 
Runge-Kutta fourth order method with a fixed 
step size was used. An illustrations, we show the 
utility of these codes for two simple nonstiff 
problems. When we use the IMSL (1989) subrou- 
tines DIVPRK and DIVPBS as solvers, we show 
the utility of this methodology for two celestial 
mechanics problems (Krogh,  1973) that have 
been used as test problems several times in the 
literature. Subroutine DIVPRK uses the Runge- 
Kutta formulas of order five and six developed 
by J. H. Verner. Subroutine DIVPBS uses the 
Bulirsh-Stoer extrapolation method and will ter- 
minate when impossible accuracies are specified. 
In the fifth example, we consider a typical stiff 
problem and discuss some limitations and restric- 
tions of this methodology. 

CONSTRUCTION OF EXACT 
BENCHMARK PROBLEMS 

We want to construct new differential equations 
that are slightly perturbed versions of the original 
differential equations. For these new differential 
equations, we can establish the true analytical 
solution using an algebraic inverse idea. Then we 
can investigate the error/tolerance relationship 
with an absolute standard. Under local stability 
assumptions, we have valuable information 
about the optimal parameters and the accuracy of 
the particular numerical solution for the given 
original differential equations. The stability as- 
sumption is easily validated by constructing 
some neighboring benchmark problems. 

Here we introduce one way for constructing 
exact benchmark problems. We take a global ap- 
proach for the perturbation term instead of a 
piecewise polynomial perturbation to avoid the 
lack of smoothness at break points. First we con- 
sider the following two distinct initial value prob- 
lems: 

x = /i(.v, t).   xUo) = *o   over r0 < r < f/ m 

x = f2(x, -V, /),    x{to) = x0,    x(t0) = -TO 
over ?„</<//   (2) 

f2: R
N x RN x R->RN. 

A candidate discrete approximate solution can be 
obtained from the original first or second order 
differential Eqs. (1) and (2) using a numerical 
method. We distinguish between first and second 
order systems because there are certain draw- 
backs if one converts a naturally second order 
system into a first order system. To establish a 
continuous, differentiable motion near a given 
approximate solution, least square approxima- 
tion using the discrete version of the Chebyshev 
polynomials can be invoked to obtain the solu- 
tion from the the already discrete solution (Abra- 
mowitz and Stegun, 1972; Junkins, 1978). We 
first consider the least square approximation pro- 
cess. There are n data points denoted as 

x\ = g(t\),   -v: = g(h), x„ = g{t„) 

where /,• are the values of the equally spaced in- 
dependent variable (h, = (ti+l - f,) = constant). 

A linear transformation of independent vari- 
ables should be made to use discrete orthogonal- 
ity with weight function w(t) = 1, 

/(/) = 
t\ 

h, 

where h, is the constant increment of /, 

.v = g(t) = G(/~). (3) 

From n data points, the function G can be estab- 
lished as a linear combination of in basis func- 
tions that form the discrete version of the 
Chebyshev polynomials as follows: 

m 

G(i) = X aiUi) 

12 
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where m £ n and 1/(0 is the ith Chebyshev poly- 
nomial. 

The Chebyshev polynomials are defined as 
follows: If um = m{m = 0, 1, 2, . . . , N) and 
w(u) = 1, then 

TM = 2 (-1)" m m   )(u-m)\NV 

With the recurrence relations: 

T0(u) = 1 

I,(«) = 1 - 
2H 

(« + 1)(N - n)Tn+i(u) = (2« + 1)(N - 2z/)7„(«) 
-n(N + «+ l)7"„-i(«). 

Note that the recurrence relations make it easy 
to evaluate an expansion in Chebyshev polyno- 
mials, and a similar recurrence makes it easy to 
evaluate the derivative of the expansion. 

Using discrete orthogonality of the Chebyshev 
polynomials, the typical coefficient a3 can be ob- 
tained as follows: 

S?=|  X,Tj(ij) 

°J ~ 2?=, TjOdTjih) 

where \ < j < m. 
We can find g{t) from G(t) because g(t) = 

G{t(t)). Using the least square approximation, 
we can find the continuous, differentiable, ana- 
lytical solution x(t) of Eq. (3) that interpolates 
the n discrete numerical solutions obtained from 
Eqs. (1) and (2). Now this analytical expression 
x(t) does not satisfy exactly the Eqs. (1) and (2). 
However, substituting *(/), x(t) into Eq. (1) al- 
lows us to determine an analytical function for 
the perturbation term <?,(/) that appears in the 
following differential equation: 

HO = /■(*(/), t) + e,(t) = F,{x, t).      (4) 

Alternatively, if the system is second order, then 
substituting *(/), x(t), x(0 into Eq. (2) allows us 
to determine the perturbation term e2(t) that ap- 
pears in the following differentia] equation: 

m = fi(x(t), x(t), t) + e2{t) = F2(x, i, 0- 
(5) 

Note that because x(t), x(t), x(t) are available 
functions, F,(x, /), F2(x, x, t) are also available 

functions that satisfy Eqs. (4) and (5) exactly, 
and x(t) is a neighbor of the original numerical 
solution{jc,,Jc2,. . . ,xn}. By construction, the 
functions <?,(/) = x(t) - fi(xU), 0 and e2{t) = 
x{t) - f2(x(t), i(/), /) are known analytically and 
therefore these small forcing functions can be 
computed exactly at all /. These functions are 
programmed and Eqs. (4) and (5) can be solved 
by numerical methods and the results can be 
compared to the exact x(t), x(t). The above 
mathematical procedure can be performed in an 
automated fashion using computer symbol ma- 
nipulation. The symbol manipulation can also au- 
tomate the generation of C or FORTRAN Code 
to compute function e, (t) and/or e2(t). 

Now Eq. (4) is a benchmark problem neigh- 
boring Eq. (1) and we have arranged that x(t), 
x(t) satisfy Eq. (4) exactly; and Eq. (5) becomes 
the benchmark problem neighboring Eq. (2) and 
we have arranged that x(t), i(f), x(t) satisfies Eq. 
(5) exactly. We obviously want the perturbation 
function e(t) to be as small as possible, that is, 
the benchmark problem is not only a near neigh- 
bor of the original discrete solution, but it also 
very nearly satisfies the same differential equa- 
tions. The previously discussed least square ap- 
proximation method typically gives the poorest 
approximation near the ends of the interval. This 
may result in a relatively large e(t) near the initial 
and final times. To avoid this problem we can 
integrate Eqs. (1) and (2) over the enlarged inter- 
val t0- =£ / s tf+ (where r0- < h, tf. > tf) and use 
these numerical results as generators for analyti- 
cal solutions over the original interval (tn < t r< 
tf). Experience indicates that a 20% '-enlarge- 
ment" {(r/+ - t0-) a \.2{tf- to)} is almost always 
sufficient to support good interpolation over the 
original interval (f0 =s t £ tf). If the measure of 
e(t) is judged too large then we increase the num- 
ber of Chebyshev polynomials m to reduce e(t) 
over the whole interval, or "start over"' by at- 
tempting to find a better approximate numerical 
solution to initiate the process. Figures 1 and 2 
provide logical flow charts showing construction 
of a benchmark problem and an associated con- 
vergence study for second order systems. 

ILLUSTRATIVE EXAMPLES 

Now we demonstrate the previous ideas using 
five initial value problems for ordinary differen- 
tial equations. First we show the utility of the 
computer codes (Lee and Junkins, 1993) for two 
simple nonstiff problems. Then, two celestial me- 
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GIVEN A DYNAMICAL SYSTEM 

x(U) = x„1   i(t0) = io.   *o<<<</ 

NUMERICAL SOLUTION PROCESS 
( for some setting on tuning parameters such as h ) 

APPROXIMATE NUMERICAL SOLUTION 

{ii, x2, •••, xn}  where  £« = £((<) 

SMOOTH ORTHOGONAL APPROXIMATION 

NEAR   {£j, x2, ••-, £„} 

EXACT SOLUTION OF BENCHMARK PROBLEM 

INVERSE DYNAMICS 

e(0 = «»W-/(*»W.*»(0.*) 

BENCHMARK PROBLEM 

x(«) = /(*(*).*«,*)+ «W 
x(U) = xh{U),   x(t0) = xh(U),   t0<t<tj 

FIGURE   1   Flow   chart   for   construction   of   a 
benchmark problem. 

chanics problems are introduced to illustrate the 
utility of this methodology when we use the 
IMSL (1989) subroutines DIVPRK and DIVPBS. 
Finally, we consider a stiff problem in the fifth 
example. 

First Order Systems 

We consider the following pair of nonlinear dif- 
ferential equations. 

x = 2x\ - 2x\X2 

X =  -X2 +  X\X2 

(6) 

where *i(0) = 1 and x2{0) = 3, and we seek the 
solution over the interval 0 s / < 10. 

First, we solve Eq. (6) using the Runge-Kutta 
fourth order method to evaluate the candidate 
discrete approximate solution. Here we use 121 

data points over the 20% enlarged time interval 
-1 < t < 11. Second, we establish a continuous, 
differentiable, analytical expression for interpo- 
lating JCI(/) and x2(t) from the discrete approxi- 
mate solution. We use 51 Chebyshev polynomi- 
als for fitting. Finally we substitute *,(/). .v:(/), 
jc,(0, x(t) into Eq. (6) and determine functions for 
<?,(/) and e2{t) that satisfy the following equations 
exactly 

x\ = 2*i - 2x]X2 + <?i 

x2 = -x2 + X]X2 + e2. 
(7) 

Now, Eq. (7) provides a benchmark problem 
for Eq. (6), and Jt,(f), x2(t) are the solutions that 
satisfy Eq. (7) exactly. Upon solving Eq. (7) nu- 
merically with various values chosen for /?, we 
establish the relationship between step size and 
global error. When we use the pointwise error in 
the root mean square sense, Fig. 3 shows the 
relationship in log/log scale. The critical value h 
is about 0.0005 and if h decreased below 0.0005, 
then the results begin to deteriorate. The rate of 
convergence is 4 in this problem and this coin- 
cides with the fact that an rth order method 
should have a global error of 0{hr) in the absence 
of arithmetic errors (Gear, 1971). Figure 4 shows 
the perturbation terms over the time interval. For 
the benchmark problem, the numerical results 
are very reliable when we use 0.0005 as /; be- 
cause the error measures are about 10~13 while 
the solutions for jr,(f), x2(t) vary from 10'2 to 10° 
order. Now we turn our attention to the original 
problem. Figure 5 shows the relationship be- 
tween step size and error at / = 10 on a log/log 
scale for the original problem. Because we do not 
know the true solution, we could follow the com- 
mon way of assessing the accuracy of a family of 
approximate solutions using the IMSL (1989) 
subroutines DIVPRK and DIVPBS. Comparing 
Figs. 3 and 5, we notice that the shape is roughly 
similar but, in Fig. 5, the critical value h is 0.0002 
instead of 0.0005. The reason for this minor dis- 
crepancy  is  the  relatively  large  perturbation 
terms in Fig. 4. If we decrease the perturbation 
terms <?,(/) and e2(t) by finding a higher order, 
more accurate interpolation and thereby make 
the benchmark problem closer to the original Eq. 
(6), then we can reduce this discrepancy. 

Second Order Systems 

We consider the following nonlinear, nonautono- 
mous second order differential equation. 

14 
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VARY 
TUNING 

PARAMETERS 

GIVEN A BENCHMARK PROBLEM 
(with a known exact solution xt(t)) 

x(l) = f(x(t),x{t),t) + e(t) 

E(<O) = **('<>),   *(*<•) = i»(<o),   <o < t < if 

INITIAL SETTING ON TUNING PARAMETERS 
FOR NUMERICAL SOLUTION PROCESS 

NUMERICAL SOLUTION PROCESS 1 
APPROXIMATE NUMERICAL SOLUTION 

OF THE BENCHMARK PROBLEM 
x, 

EVALUATE ERROR MEASURE 

STUDY THE CHARACTERISTICS 

GLOBAL ERROR vs TUNING PARAMETERS 

FIGURE 2    Flow chart for convergence study. 

-9- 

O-.o 

o ■ 

-4.5 -3.5 -25 
LOG,o(h) 

FIGURE  3   Global   error   vs.   step   size   for   the 
benchmark problem. 

FIGURE 4   Perturbation terms of example 1. 

15 



Construction of Benchmark Problems       409 
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  Xi  error 
* ■> <■ * ■" x2  error 

-4.5 -3.5 -2.5 
LOG10(h) 

-1.5 

FIGURE 5   Error (at / = 10) vs. step size for the 
original problem. 
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FIGURE   6   Global   error   vs.   step   size   for   the 
benchmark problem. 

—x 0.1(1 + x2)x + 0.1.x-3 + sin 3/   (8) 

where x(0) = 1 and i(0) = 0, and we seek the 
solution over the interval 0 ^ / ^ 10. We convert 
Eq. (8) to a first order system as follows: 

x\ = x2 

x-> -xt - 0.1(1 + x\)x2 + O.lx, + sin 3/ 
(9) 

where JC,(0) = 1 and x2{0) = 0. 
We solve Eq. (9) using the Runge-Kutta 

fourth order method to evaluate the candidate 
discrete approximate solution. Here we con- 
struct the interpolated solution using 121 data 
points over the 20% enlarged time interval -1 =s 
/ < 11. An analytical expression for .V|(r) is ob- 
tained from the discrete approximate solution. In 
this problem, a degree 30 Chebyshev polynomial 
is established by the least square approximation. 
Substituting x\{t), x\(t), x\{t), into Eq. (8) we cal- 
culate the function e(t) that satisfies the follow- 
ing equation exactly. 

x = -x - 0.1(1 + x2)x + O.Lv3 + sin 3/ + e. 
(10) 

To use the Runge-Kutta method, Eq. (10) can be 
converted to a first order system as follows: 

*> = x2 

x2 = -x, 0.1(1 + x2)x2 + OAx] + sin 3/ + e. 

Now, Eq. (10) becomes a benchmark problem 
for Eq. (8), and x(t) is an algebraic function that 
satisfies Eq. (10) exactly. When we use the 
pointwise error in the root mean square sense, 

Fig. 6 shows the relationship between global er- 
ror and step size. The rate of convergence is 4 as 
expected. Figure 7 shows the perturbation term 
over the time interval. The critical value for step 
size is about 0.001. Now we consider the original 
problem. The relationship between step size and 
error at / = 10 is shown in Fig. 8 when we follow 
the common way assessing the true solution us- 
ing the IMSL (1989) subroutines DIVPRK and 
DIVPBS. Comparing Figs. 6 and 8. we observe 
that the critical value h and the accuracy are al- 
most the same. 

We change the initial conditions slightly and 
the nonautonomous term in the differential equa- 
tion as follows: 

x= -x - 0.1(1 + .v2).v + 0.1.v3 + 1.2 sin 3t 
(12) 

where .v(0) = 1.2 and .v(0) = 0.2 over the interval 
0< /< 10. 

u    0E+0-- 

Du 

1E-2 

FIGURE 7   Perturbation term of example 2. 
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-4.5 -3.5 -2-5 
LOG10(h) 

FIGURE 8   Error (at / = 10) vs. step size for the 
original problem. 

After using the same procedure, we obtain the 
global error/step size relationship shown in Fig. 
9. We notice that Figs. 6 and 9 are almost the 
same. In other words, the critical value for h and 
the accuracy are almost identical even though 
there are 20% perturbations in the initial condi- 
tion and the forcing term in the differential equa- 
tion, in this case. 

Two Body Problem 

We consider the simple two body problem. The 
exact solution is periodic with period 2ir and the 
solution traces out an ellipse with eccentricity 

0.6. 

x = -xlr\    JC(0) = 0.4,    i(0) = 0 

y = -yl,-\    y(0) = 0,    y(0) = 2 

where r = U2 + y2)m. 

(13) 

-15 -10 N   "5 ° 
LOGio(Tolerance) 

FIGURE 10   Absolute error vs. tolerance for the 
benchmark problem (DIVPRK). 

These equations can be solved exactly (Battin. 
1987): the analytical solution is not included here 
because of space limitations. We reformulate Eq. 
(13) as a first order system as follows: 

X\ = A': 

X2 = -A',/(.YI +   A-3)3'- 

i3 = X4 

X4 = -.tj/(.TT +   A-i)3'- 

(14) 

= 1 where .v,(0) = 0.4, .v2(0) = 0, .v3(0) = 0, .v4(0) 
We solve Eq. (14) using DIVPRK to evaluate 

the candidate discrete approximate solution. 
Here we use 121 data points over the 20% en- 
larged time interval and a degree 50 Chebyshev 
polvnomial approximation is used for the least 
square fitting of .v,(r) and .v3(/). After construct- 
ing the benchmark problem, we do an absolute 
error test on (0. 2TT). Figures 10 and 11 show the 

# 
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   Xi   error  norm 
a-A-a-4-A x2   error  norm 

-4.5 -3.5 -2-5 
LOG10(h) 

-1.5 

FIGURE   9   Global   error   vs.   step   size   for   the 
benchmark problem of 20% perturbations. 
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FIGURE 11   Absolute error vs. tolerance for the 
benchmark problem (DIVPBS). 
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DIVPRK 

-15 
-20 

0.015 

-15 -10 -5 
LOG10(Tolerance) 

FIGURE 12   Absolute error vs. tolerance for the two 
body problem (DIVPRK). 

FIGURE 14   Perturbation terms of the two body 
problem. 

relationship between absolute error and toler- 
ance in log/log scale when we use DIVPRK and 
DIVPBS for the benchmark problem. Figures 12 
and 13 show the relationship between absolute 
error and tolerance in log/log scale when we use 
DIVPRK and DIVPBS for the original two body 
problem. We notice that Figs. 10 and 11 are al- 
most identical to Figs. 12 and 13, respectively. 
The perturbation terms are shown in Fig. 14. We 
plot the relationship between the number of func- 
tion calls and the absolute error in Fig. 15. Thus 
the benchmark problem (constructed by the 
method of this study) essentially gives results 
that are identical to those obtained by using the 
exact solution of the original problem. 

Euler Equations of Motion 

We consider the Euler equation of motion for a 
rigid body without external forces, 

,Y,  =  X2Xi 

x2 = -O.5i.Y3.v1 

i3 = -x\x2 

(15) 

where jc,(0) = 0, .v2(0) = 1, jr3(0) = 1. 
The classical exact solutions of Eq. (15) are 

the Jacobian elliptic functions (Abramowitz and 
Stegun, 1972) as follows: 

x, = sn(t I 0.51),    xz = dn{t \0.5\), 

Xi = cn(t I 0.51). 

They are periodic with a quarter period K where 
K  =   1.86264 08023 32738 55203   • • •   in  this 
case. 

We solve Eq. (15) using DIVPRK to evaluate 
the candidate discrete approximate solution. To 
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FIGURE 13   Absolute error vs. tolerance for the two 
body problem (DIVPBS). 
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FIGURE 15   Number of function calls vs. absolute 
error. 
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-20 -15 -10 -5 
LOG10(Tolerance) 

FIGURE 16   Absolute error vs. tolerance for the 
benchmark problem (DIVPRK). 
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FIGURE 18   Absolute error vs. tolerance for the 
Euler equations (DIVPRK). 

establish a benchmark using our method, we use 
121 data points over the 20% enlarged time inter- 
val and determine a degree 50 Chebyshev least 
square polynomial approximation of -V|(/), x2(t), 
and Xi(t). After constructing the benchmark 
problem, we do an absolute error test on (0,4 K). 
Figures 16 and 17 show the relationship between 
absolute error and tolerance in log/log scale 
when we use DIVPRK and DIVPBS for the 
benchmark problem. Figures 18 and 19 show the 
relationship between absolute error and toler- 
ance in log/log scale when we use DIVPRK and 
DIVPBS to solve Eq. (15) and compare to the 
classical Jacobian elliptic function solution. We 
notice that Figs. 16 and 17 are almost identical to 
Figs. 18 and 19, respectively. The perturbation 
terms are shown in Fig. 20. We plot the relation- 
ship between the number of function calls and 
the absolute error in Fig. 21. Thus, again, 
this   example   indicates   that   our  neighboring 

benchmark problem leads to essentially identical 
convergence properties to using the exact solu- 
tion of the original problem. 

A Stiff Problem 

We consider the following problem (Shampine 
and Gordon, 1975) that represents a typical stiff 
problem. 

.v, = -29998x1 - 39996.Y2 

.Y-. = 14998.5.Y, + 19997.V7 
(16) 

where jr,(0) = 1. x2(0) = 1. 
The exact solutions of Eq. (16) are as follows: 

xi(t) = 7 exp(-104/) - 6 exp(-/) 

.v;(/) = -3.5 exp(-104/) + 4.5 exp(-/). 
(17) 
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FIGURE 22   Solution of example 5 for the rapid 
change region. 

The eigenvalues of the coefficient matrix are -1 
and -104. Figures 22 and 23 show the solutions 
over two different intervals, a region of very 
rapid change followed by gradual asymptotic be- 
havior. It is almost impossible to obtain a satis- 
factory orthogonal function benchmark problem 
that covers both regions with a reasonable num- 
ber of terms. We conclude that the proposed 
methodology is not adequate for such stiff prob- 
lems unless piecewise approximation methods, 
for example, the type introduced by Junkins et 
al. (1973) are used. Stiff problems are relatively 
expensive to solve and the expense depends 
strongly on the tolerance (Gear, 1971; Shampine 
and Gordon, 1975; Shampine and Gear, 1979). 
Enright et al. (1975) provide a good collection of 
stiff test problems. 

SUMMARY AND CONCLUSION 

The present article introduces an inverse method 
for constructing exact benchmark problems for 
initial value problems. This methodology gives 
valuable information about the optimal tuning pa- 
rameters and the accuracy of the numerical solu- 
tion for a class of ordinary differential equation 
problems and for a given solution code. Numeri- 
cal examples indicate that a rigorous error analy- 
sis is usually obtained not merely for one nominal 
solution, but for a substantial neighborhood of 
the nominal solution. If one wants to use the 
classical Runge-Kutta method with a fixed step 
size, then the codes (Lee and Junkins, 1993) pro- 
vide directly useful information about the opti- 
mal step size h and the associated accuracy. 
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FIGURE 23   Solution of example 5 for the gradual 
change region. 
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More sophisticated users who are familiar with 
adaptive and robust codes can also construct 
similar benchmark problems; however, the Che- 
byshev approximation method may have to be 
replaced or modified to obtain a method not re- 
stricted to uniformly spaced data. For stiff sys- 
tems, special purpose approximations may be 
required in lieu of the global Chebyshev approxi- 
mations.  The  analytical  expressions  for  the 
benchmark problem and its solution can be estab- 
lished using computer symbol manipulation [e.g., 
MACSYMA   (1988),   Mathematica,   MAPLE, 
etc.]. Then the user investigates the global error/ 
parameter relationship and compares various 
codes with special case absolute standards. In 
examples 3 and 4, we show the utility of this 
methodology using the IMSL (1989) subroutines 
DIVPRK and DIVPBS as solvers. And we inves- 
tigate the absolute error/tolerance relationship 
and compare DIVPRK and DIVPBS. We have 
developed some basic methodologies, but there 
remains a need for additional numerical experi- 
ments to further evaluate the practical utility of 
this approach. 
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VALIDATION OF FINITE DIMENSIONAL APPROXIMATE 
SOLUTIONS FOR DYNAMICS OF 

DISTRIBUTED PARAMETER SYSTEMS 

John L. Junkins* and Sangchul Leef 

An inverse dynamics method is introduced for constructing exact special 
case solutions for hybrid coordinate ordinary/partial systems of 
differential equations (hybrid ODE/PDE systems), and the utility of this 
method in validating numerical solution methods is explored. 

INTRODUCTION: Construction of Benchmark Problems for 

Solution of Ordinary Differential Equations 

Given a flexible multi-body dynamical system, most rigorously described by a 
hybrid system of nonlinear ordinary and partial differential equations   we seek to 
validate simulations of the behavior of the system by numerical methods.   With 
most applications of approximate solution algorithms, we must somehow evaluate 
the accuracy of a given approximate solution, without knowing the true solution 
What happens if we can construct an exact forced response solution for a special case 
motion near(in a sense to be established) a candidate approximate solution? This 
gives us an absolute standard and promises the capability of displaying exactly the 
space/time distribution of solution errors for the special-case solution and therefore 
suggesting remedies, if needed, to improve the discretization-based solution process 

The idea is easily introduced by first considering the initial value problem for 
nonlinear ordinary differential equations.1 In general, we do not know_the true 
solution and the numerical methods give us an approximate solution.   The most 
common way of assessing the true error of a numerical solution is to reduce   he 

tolerance, integrate again, and compare the results2'3 ^.^ "P^^"* 
error analyses can be conducted, there is no general way   «absolutely guarantee 
the final accuracy of the solutions. While this does not preclude obtaining practical 
solutions for most applications, it remains very difficult to answer subtle questions 
Actually the theory of differential equation solvers is far from complete, so that 
the understanding of a given code's performance invariably requires a study of 
experimental results. Hull, et al4 and Krogh5 provided two outstanding collections 
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of test problems for this purpose, for the case of ordinary differential equations. 
These test problems have been used in the development and testing of the codes 
and can be regarded as standard benchmark problems for initial value problem 

Whenever we know the true solution of a test problem we can investigate 
the relationship between the true, or global error and parameters of a given 
code(e.g., step size, local error tolerance, order, etc.)- Of course, only for a small 
minority of interesting problems can the initial value problem be solved analytically. 
We introduce here an inverse method which algebraicly constructs a continuous 
neighbor of a given numerical approximate solution; the neighboring continuous 
motion does in fact exactly satisfy the differential equations(with a known small 
forcing function) and serves as an excellent benchmark problem. The remaining and 
most critical question is: How useful is the convergence and accuracy information 
obtained for the benchmark problem, as regards drawing conclusions for the original 
■problem?. It is certainly true that there are open questions on this issue, however, by 
constructing a family of neighboring benchmark problems, it is usually possible to 
judge the size of the neighborhood in which the convergence and accuracy properties 
are relatively invariant with respect to the perturbation, and thereby gain the 
practical insight needed to proceed with confidence in a solution and associated 
error measures. . , .       .     . 

Now, we propose a method to construct a benchmark problem which is a closely 
neighboring trajectory of a given approximate solution of the original problem. 
As will be evident, the benchmark problem motion is constructed algebraicly so 
that it satisfies exactly the differential equation but with a known, usually small, 
time varying forcing function. We can then investigate the global error/parameter 
relationship of the benchmark problem with the true solution in hand. Under 
the assumption that the original problem is well-posed with respect to small 
perturbations, we have valuable information about the optimal parameters and 
the accuracy of the numerical solution. Through study of a family of neighboring 
benchmark problems, we can directly establish insight on the "stability" of this 

error analysis. 
Initially, we restrict attention to nonlinear ordinary differential equation(ODE) 

systems, we subsequently broaden the discussion and examples to consider hybrid 
differential equation systems. Here we introduce one way for constructing the exact 
benchmark problem. First we consider the following initial value problem for a 
second order ODE system: 

x = f{x,x,t), x{t0) = x0,   x(t0) = io overt0<t<tf 

f: RN xRN xR-*RN 

Here we consider the case where x is a scalar(i.e.,iV=l). The following approach 
can be easily generalized for the vector case. A candidate discrete approximate 
solution can be obtained from the original second order differential equation (1) 
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using a numerical method. To establish a continuous, differentiate motion near a 
«riven approximate solution, we use a least square approximation based upon the 
discrete version of the Chebyshev polynomials; this polynomial approximation can 
be established directly from the discrete approximate solution.6-7 We first consider 
the least square process. There are n data points such as xj = g{U), x2 - $(*2), 

Xn   _  g(tn)    where U  are the equally spaced values of the independent 

variable^ = (U+i ~ U) = constant). .,.,.. 
A linear transformation to nondimensionahze the independent variable should 

be made to use the discrete version of the Chebyshev polynomials. 

where ht is the constant increment of i. 

X = g(t) = G(t) 

From n data points, the least square polynomial approximation function G can be 
established by a linear combination of m basis functions; we use the discrete version 

of the Chebyshev polynomials7 with weight function w(t) = 1 as follows: 

m 

G(t) = Y,aiTi® 
t=l 

where m < n and the Ti(t) are the discretely orthogonal Chebyshev polynomials. 
The Chebyshev polynomials are defined as follows: 

If um = m (m = 0,1,2,- • • ,N) and w(u) = 1, then 

« /n\/n + Tn\u\(N-Tn)\ 

Tn(.)=E(-1)mUj(   m   )(u-my.Nl 
771 = 0 

with the recurrence relationships: 

r0(«) = i 

ri(«) = i - ¥ 

(n + l)(N -n)Tn+i(u) = (2n + 1)(N - 2u)Tn(u) -n(N+n+ l)Tn_i(«) 

Using the discrete orthogonality property of the Chebyshev polynomials7, coefficient 

a.j can be obtained as follows: 

j    E?=1 Wmu) a; = 
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where 1 < j < m. Since no matrix inverse is required, and owing to the completeness 
of these polynomials, it is well known that most smooth functions can usually be 
approximated accurately using a modest degree (n).^ 

We can find g(t) from G(t), since g(t) = G(t(t)). Using this least square 
approximation, we can find a continuous, differentiable, analytical solution xb(t) 
which interpolates or lies very near the given n discrete numerical ii approximate 
solutions of Eq.(l). Of course this analytical expression xb(t) does not satisfy 
exactly the Eq.(l). However, substituting xb(t), xb(t), xb(t) into the equation 
e(t) = x(t) - f(x(t),x(t),t) allows us to determine an analytical function for the 
perturbation term e(i) which appears in the following differential equation: 

£(t) = f(x(t),x(t),t) + e(i) = F(x,x,t) (2) 

Since f{x(t),x(t),t) is given and e(t) is an available algebraic function, F(x,x,t) is 
available. Now xb{t) satisfies Eq.(2) exactly, and finally, this known function xb(t) 

is a neighbor of the original numerical solution {xi, x2, •■•, ^n}- By algebraic 
construction the function e{t) = xb(t) - f{xb{t),xb(t),t) is known analytically 
and therefore we know this small forcing function at all f, and obviously, we 
know "how small" e{t) is. This function is programmed and Eq.(2) can then be 
solved by numerical methods and the results can be compared to the known exact 
xb(t),xb{t). The above mathematical procedure can be performed successfully using 
computer symbol manipulation8, this is especially important for the generalizations 
to consider hybrid differential equations. Now Eq.(2) is a benchmark problem 
of Eq.(l) and xb{t), xb{t), xb{t) satisfy Eq.(2) exactly. We obviously want the 
perturbation function e(t) to be as small as possible, i.e., the benchmark problem 
is not only a near neighbor of the original discrete solution, but it also very nearly 
satisfies the given differential equations. 

The previous least square approximation method has often been found to give 
poor results near the ends of the interval. This poor fit may cause a relatively large 
e(t) near the initial and final times. To avoid this problem we integrate Eq.(l) 
over the enlarged interval t0- < t < tf+ (where t„- < U, </+ > if) and use these 
numerical results as generators for analytical solutions over the original interval 
(t0 < t < tf). Experience indicates that a 20% "enlargement"{(*/+ - *o-) > 
1.2(4/ - to)} is almost always sufficient to support good interpolation over the 
original interval (t0 < t < tf). If the measure of e(f) is judged too large then we 
increase the number of Chebyshev polynomials m to reduce e(t) over the whole 
interval, or "start over" by attempting to find a better approximate numerical 
solution to initiate the process. Figures 1 and 2 provide logical flow charts showing 
construction of a benchmark problem and associated convergence study. 

Now we demonstrate the idea using a simple nonstiff problem. We use the 
Runge-Kutta 4th order method with fixed step size, therefore we have the most 
common case that the integration control parameter is simply the step size h. The 
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relationship between step size h and the global, or true errors gives us the infomation 
about the critical value for h and the accuracy of the numerical solution. We 
consider the following nonlinear, nonautonomous second order differential equation. 

j = -x- 0.1(1 + s2)s+0.1x3 +«n3t (3) 

where s(0) = 1 and s(0) = 0, and we seek the solution over the interval 0 < t < 10. 

We convert Eq.(3) to a first order system as follows: 

si = s2 /4j 

i3 = -xi - 0.1(1 + x])x2 + 0.1s? + sin3t 

where xi(0) = 1 and s2(0) = 0. 
First, we solve Eqs.(4) using the Runge-Kutta 4th order method to evaluate the 

candidate'discrete approximate solution. Here we use 121 data points over the 20% 
enlarged time interval -1 < t < 11. Second, we establish a continuous, differen- 
tiable, analytical expression for interpolating xH(t) from the discrete approximate 
solution xi{t). We use a degree 30 Chebyshev polynomial approximation for the 
least square fitting. Finally we substitute xlb{t), xu{t), xu(<) into Eq.(3) and 
symbolically determine the function e(t) which appears in the following equation. 

x = -x- 0.1(1 + s2)s + 0.1s3 + sin3t + e (5) 

To use the Runge-Kutta method, Eq.(5) can be converted to a first order system 

as follows: 
xi=x2 (6) 

i3 = _Xl _ 0.1(1 + x\)x2 + 0.1s? + sin3t + e 

Now   Eq.(5) serves as a benchmark problem for Eq.(3), because we know 
functions' xb(t)  and  e(t)  which satisfy  Eq.(5)  exactly.     Upon  solving Eqs (6 
numerically with various values chosen for h, and using the benchmark initial 
state as initial conditions {Xl(0) = st(0),  s2(0) = xb(0)}, we can establish the 
relationship between step size and global error.  When we use the point wise error 
in the root mean square sense, we are led to the results in Fig.3 winch shows the 
global error/step size relationship on a log/log scale.   The rate of convergence on 
a log/log scale is 4 in this problem; this coincides with the fact that an rth order 
method should have a global error of 0(hr) in the absence of arithmetic errors 
The critical value for step size is about 0.001; if h decreased below 0.001, then the 
results deteriorate due to the round-off error. The exact solution of this benchmark 
^b^Ämulationeriors are shown in Figs.5 and 6. To study the robustness of 
the convergence characteristics of Fig.3, we introduce relatively large perturbations 
in the initial conditions and the nonautonomous term in the differential equation 

as follows: 
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x = -x- 0.1(1 + x2)i + 0.1a;3 + 1.2sin3t (7) 

where x(0) = 1.2 and i(0) = 0.2 over the interval 0 < t < 10. 
After using the same procedure to vary the step s1Ze and therefrom we 

obtain the global error/step size relationship shown in Fig.4. Notice hat Fig.3 
and Fig.4 are almost identical. In other words, both the critical value h and 
the associated accuracy are essentially unchanged, even though we introduced 
We(20%) perturbations in the initial conditions and in the forcing term of the 
differential equation. Obviously these results are problem dependent, but a similar 
process will provide the needed insight for other problems. 

Now we apply this idea to an idealized three-body distributed parameter 
system. The main difference is that there are two independent variables for space 
and time. Therefore, the least square approximation method must be generalized 
to deal with two independent variables. In order to obtain an approximate 
candidate discrete solution, we use linear quadratic regulator(LQR) to design 
control forces and we use the finite element approach for space discretization. From 
this approximate solution, we construct a smooth, differentiable, analytical solu ion 
which is physically meaningful. We investigate the exact space/time distribution 
of errors of the numerical simulation using Newmark method with finite element 

modeling. 
A THREE-BODY DISTRIBUTED PARAMETER SYSTEM 

Now we demonstrate the idea on an idealized three-body distributed Parameter 
system. With reference to Fig.7, we consider a rigid hub with a cantilevered flexible 
appendage which has a finite tip mass.    Table 1 summarizes the configuration 

parameters of this flexible structure. 

Table 1   Configuration Parameters of a Three-Body Problem 

PARAMETER SYMBOL VALUE 

Hub radius r 1ft 

Rotary inertia of hub Jh 8slug-ft2 

Mass density of beam P 0.0271875 slug/ft 

Elastic modulus of beam E 0.1584xl010 lb/ft2 

Beam length L 4.0 ft 

Moment of inertia of beam I 0.4709502797xl0~7 ft4 

Tip mass TTlt 0.156941 slug 

Rotary inertia of tip mass Jt 0.0018 slug-ft2 

2094 

28 



The appendage is considered to be a uniform flexible beam and we make 
the Euler-Bernoulli assumptions of negligible shear deformation and negligible 
distributed rotatory inertia. The beam is cantilevered rigidly to the hub. Motion is 

restricted to the horizontal plane and we neglect the velocity component -yO, that 
is perpendicular to the y direction. The control system is assumed to generate a 
torque u acting upon the hub, a torque utip and a force ftip acting upon the tip 

mass, and a distributed force density / acting upon the appendage. We assume 
small elastic motions viewed from the hub-fixed rotating reference frame. Overdots 
denote derivatives with respect to time and primes denote derivatives with respect 

to the spatial position. 
The kinetic and potential energies of this hybrid system are as follows: 

2r = Jh62 + f  [p{y + (x+r)Ö}2)dx + mt{y{L) + {r + L)8}2+Jt{6+y'{L)}2(8) 
Jo 

2V= jL{EI{y"f}dx (9) 
Jo 

The nonconservative virtual work of this system is given by 

8Wnc = {u+        f{x)(x +r)dx + {L + r)ftip + utip}86 
Jo 

+  /    f(x)8y dx + ftij,6y(L) + utipSy'(L) 
Jo 

Using an explicit version of the classical Lagrange's equation for hybrid 
coordinate distributed parameter systems10, the governing differential equations 
and the boundary conditions are obtained efficiently. 

jh§+ fL
p(x+r)(y^(x + r)e)dx + rnt{L + r)UL + r)e + y{L)J+Jt(e + y'(L)) 

= u+  I    f{x)(x + r)dx + (L + r)ftip+utip (H) 
Jo 

p{y + (x + r)6} + Ely"" = / (12) 

-mt{(L + r)0 + y(L)} + ftip = 0 (13) 

(10) 

83y 

ox3 

d2y 

ox1 

L 

+Jt{6 + y'(L)}-utip = 0 (14) 
L 

Notice that if we knew an explicit, differentiable solution for the motion 
variables {y(x,t),6(t)}, then the Eqs.(ll-14) can be solved directly and ex- 
actly  for  the  four  corresponding  time  and  space  varying forces   and  moments 

2095 

29 



{u(t)J(x,t),utip{i),ftip{t)} thus yielding the desired inverse solution. Since we 
are interested in physically meaningful problems, we do not wish to randomly guess 
the solution {y(x,t),0(t)}. Motivated by the above results for ODEs, we will con- 
struct an exact solution which is a near neighbor of a given approximate solution. 
First we consider a conventional path to construct the approximate solution. 

FINITE ELEMENT APPROACH 

Using the FEM, the partial differential equations of the motion are transformed 
into an approximate set of second-order differential equations in terms of the 
displacements, velocities, and accelerations of the finite element coordinates, and 
the external forcing functions. Several finite element models for a flexible arm 
are presented in Refs.[ll] and [12]. In this section, we will develop a finite element 
model for a hub with an appendage and a tip mass by using the extended Hamilton's 
principle that provides a variational weak form for the finite element model. It is 
significant to note that we carefully introduce the finite element approximations in 
such a way that large hub rotations are admitted; the FEM represents small elastic 
displacements with respect to hub-fixed axis. 

The application of the extended Hamilton's principle yields 

f2(8T-8V + 8Wnc)dt = 0, 86 = 8y = Q    att = <i,*2 (15) 

Substituting Eqs.(8-10) into Eq.(15) and integrating by parts gives 

+ {[   p(x+r)(y + (x+ r)6)dx + Jh6 + mt{L + r)(y{L) + (L + r)8) 

+ Jt(^-\    +e)-(u+f   f(x)(x+r)dx + (L + r)ftip+utip)}l 
\0X   \L ) \ J0 

+ [mt(y{L) + (L + r)9) - ftiP}ty(L) 

(16) 

The displacement y{x,t) can be discretized using a finite element expansion 
13,14 

y(^0 = E^e)(^e)W (17) 
i=l 

>86 

dt = 0 
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where u[e) ,v^e) (^ A&)) are transverse deflection and rotation at the left (right) 

end of the element, and ^e) are the Hermite cubic polynomial shape functions 
which satisfy the conditions for the admissibility and that are defined over the 

finite element. 
The acceleration and curvature are expressed as follows: 

««.<>-E^M^M-       0 = E^(^w)^w    <18) 
i=l i=l 

The following cubic functions are adopted as the shape functions for i-th finite 

element14 

.«3 
^ = 1-35?+25?,        ip2 = hxi - 2hxi + hxt 

^3=35?-25?, $A = -hx\ + hx\> xi = (x-xi)/h 

where x{ is the distance from the root of the appendage to the left end of the i- 
th finite element, and h is the length of the finite element. These are the most 
commonly used shape functions for one-dimensional beam elements. 

Substitution of Eqs.(17-19) into Eq.(16) and carrying out the spatial integra- 
tions yield the global mass, stiffness and forcing matrices. After some algebra, the 
assembled matrix differential equation is as follows: 

Jh + Med    M6v 

Mv6        Mvv 

m   [o   o l m 
\vj + [0    Kvv\   UJ 

1    {r + L) 
0        0 

J0
Lf(x)(x+r)dx 

Jo f{xW?\x)dx + t f(x)^2)(x)dx 
Jo f(x)^\x)dx + J2

h
h f(x)42\x)dx 

1 0      I ««„ )       /£$ f{x)i,f\*)d* + /("„-I), fWPWd* 

(20) 

where v is the coordinate which consists of the transverse deflection and rotation 
at each node of the appendage, and the matrix elements of Eq.(20) are presented 

in the Appendix. 
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CONSTRUCTION OF A CANDIDATE DISCRETE SOLUTION 

We can find a physically meaningful approximate solution by using any given 
approximate forward solution process. For simplicity, we assume that only the hub 
torque u(t) is non zero. Then Eq.(20) can be written in a linear second order matrix 

form as follows: 
1 Mx + Kx = 0 

(21) 

where 

={:} 
We design a typical control law using the linear quadratic regulator(LQR), and 

modal coordinates are used to design controller. To perform the modal coordinate 
transformation, the following open-loop eigenvalue problem should be solved first15 

i = l,2, 

i = 1,2, 

with the normalization equation 

SMii =l 

We introduce the modal matrix 

* = &.&."->4J 
The general modal coordinate transformation is then 

x(t) = *2(t) 

where T)(t) is the n x 1 vector of modal coordinates. 

The transformed equation of motion becomes 

,n 

,n 

Mi) + Krj = Du 

(22) 

(23) 

(24) 

(25) 

(26) 

where 

M = $TM$ = J,     k = $TK$ = diag(0,wl,"lr--,"l-i),     D = & 

Note that diagonal zero in K corresponds to the rigid body mode. For control 
applications the system dynamics are usually modeled as first order state space 
differential equations. We introduce the "2n" dimensional modal state vector 

-{i) (27) 
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Eq.(26) can be written as the first order system 

z = Az + Bu (28) 

/here 

A = 
0       / 

-K    0 
B = 

We adopted the following performance index for the LQR control design: 

f°° 
J= /    (zTQz + uTRu)dt 

Jo 
(29) 

ith 

Q = 
0    o 
0    /„ 

Ä = l 

where tt = diag(q,w\,- ■■ ,wü_i)- 
The above performance index is an energy type, since the first term and second 

term in the performance index corresponds to the state energy and the control 

energy respectively. _ 
By solving the Riccati equation16, the optimal feedback control is obtained 

u -gz (30) 

Now we can solve the initial value problem using a time discretization pro- 

cess(e.g. Runge-Kutta) and through Eqs.(17,25,30) we obtain y(xi,U), 8(U)_ and 

Ü(U), at discrete points in space and time. The approximate motion {y(xu U), fl(t»)} 
corresponds to the system response to a hub torque designed to maneuver the sys- 

tem and arrest vibration. 

CONSTRUCTION OF A BENCHMARK PROBLEM 

We want to construct a continuous, differentiable, analytical solution that has 
physical meaning. A candidate discrete approximate solution for the hybrid system 
can be obtained using any given approximate forward solution process and a given 
controller. This approximate solution can be used as a generator for a nearby 
smooth space/time motion for which we can determine the exact forces(required to 
be consistent with this prescribed motion and the exact equations of motion). Least 
square approximation associated with using the discrete version of the Chebyshev 
polynomials can be invoked to obtain the smooth motion f(x,y) solution from 
the discrete solution. While we invoke a least square approximation to construct 
the smooth f(x,y) from an already approximate discrete solution, we subsequently 
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determine the modified forces to be exactly consistent with this motion /(x,y). We 
first consider the least square process. 

There are n' X m' discrete data points such as 

zu =/(asi»yi). 2ia = /(*iiya)i  •••>  «im' =/(a5li!/m«) 
Z21  =/(a;2,t/l),   Z22 = f(x2,V2),   "    ",   Z2m<  = ffaiVm') 

Zn'l  =/(a:n',!/l),   *n'2  = f{xn-iVl),   '••,   Vm'  = /fan', 2/m') 
where X{, y, are equally spaced independent variables. 

How can we reliably compute a continuous, differentiable, analytical function 
/ from the data points in the least square sense? Analogous to the ODE case, we 
elect to make use of discrete orthogonality. We nondimensionalize (x,y) using 

_. .    x -xi        . .    y-yi x& = -TT   y{y) = -rr 
where hx, hy are the increments of x and y respectively. 

* = f{*,y) = F(*>y) 

From two-dimensional n' x m' data points, the function F can be approximated 
by p x q two-dimensional basis functions that come from the discrete version of the 
Chebyshev polynomials [weight function w(x) = 1] as follows: 

F(x,y) = J2J2Wi(*)TM 

where p < ri', q < m' and T,(*) is the univariate Chebyshev polynomial in the 

discrete range. 
We use the previous definition of Chebyshev polynomials and the recurrence 

relation. Using discrete orthogonality properties of Chebyshev polynomials, the 
typical coefficient brs can be obtained as follows: 

where 1 <r <p, 1 < s < q. 
We can find /(x,y) from F(x,y), since /(x,y) = F(x(x),y{y)). 
Using the previous method associated with the Chebyshev polynomials, we 

interpolate a smooth differentiable function yfc(x,<) as a two-variable orthogonal 
function expansion which passes near the y(xi,U) points. Similary, we can interpo- 

late a smooth differentiable function 6b(t) from 6(ti) data points. Since yb(x,t) and 

2100 

34 



eb(t) are smooth, differentiable functions, we can force them to be exact solutions 
of our dynamical model by simply substituting yb(x,t), 0b(t) and their space/time 
derivatives into Eqs.(ll-14) and solving the four equations analytically for four new 

forces -HO, /(*,o» «**(*)> /«*(*)}which satisfythese eiuations exactly- Com- 
puter symbol manipulation makes this process possible. 

SIMULATED RESULTS 

First we find a candidate discrete solution for the enlarged time interval 
(-1 < t < 2) with initial conditions fl(-l) = O.lrad and y(s,-l) = 0 for all x. We 
use LQR to design control force ü{t) and use the finite element approach for space 
discretization. Here we use 1 for q of Eq.(29) and use the configuration parameters 
as shown Table 1. Then we construct a benchmark problem for time interval 

(0 < t < 2). Figures 8-13 show yb{x,t), 6b(t), u(t), f(x,t), utip(t), and ftip(t) 

which satisfy Eqs.(ll-14) exactly. Note that even though we use the enlarged time 
interval and have good interpolations for 6b(t) and yb(x,t) near the boundary, there 
exists relatively large error for control forces, near the boundary, compared to the 
nonlinear ODE cases. This is due to the fact that we have two independent variables 
time and space, and have coupling terms which are time and space derivatives of 
yb(x,t) in the evaluation of control forces. In contrast to enlarging the time interval 
for ODE problems, it is neither physically nor mathematically meaningful to enlarge 
the spatial domain. As will be evident, this is a minor problem, and does not prevent 
us from establishing "exact" benchmark problems. 

Finite element approach gives us Eq.(20) and for simulation we use step- 
by-step solution using Newmark integration method. Given initial conditions 

{y(x,0) = yb{x,0), 0(0) = 0&(O)} and force functions {«(t), f(x,t), utip(t), ftiP(t)h 
the approximate simulation of this structure's dynamics {y,(x,t), 8.(t)} can pro- 
ceed. Figure 14 shows the space/time error distribution ey(x,t) = ys(x,t)-yb(x,t) 

when we use 20 finite elements and 0.002 sec. for step size. 
Second we find a candidate solution for the enlarged time interval (0 < t < 0.1). 

Initial condition for 6 is O.lrad and the third natural mode of this flexible structure 
is used for y(x,0). We use LQR to design control force u{t) and FEM is used for 
sapce discretization. Here we use 100 for q of Eq.(29) and use the configuration 
parameters as shown Table 1 except mt and Jt (m,=0.256941, J,=0.0028). Then 
we construct a benchmark problem for time interval (0 < i < 0.08), i.e., we have 

new set yb(x,t), 0b(i), and {«(t), f(x,t), uti?(i), /«„(<)} which satisfy Eqs.(ll-14) 

exactly. .      , 
Now we can investigate the convergence errors in a family of approximate 

solutions with special case absolute standards. When we use the Newmark 
integration method with finite element modeling, the convergence and accuracy 
behavior is studied as a function of the number of finite elements and the integration 
step size. Figure 15 shows the error norm ||e*|| and ||ej for various mesh sizes for 
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a fixed integration step size on a log/log scale. Figure 16 shows the error norm 
lleell and ||e,|| for various integration step sizes for a fixed number of finite elements 
on a log/log scale. The error norm distribution of 0 and y is shown in Figs.17, 18 

respectively, as a function of DT(time step size) and H(mesh size). 
Here we introduce the following definitions for the supmetnc error. 

IMOIU'(o,T) = {j[   eg(t)2dtj 

\\ey(x,t)\\mo,T;L>)^{l   I   ey{x,tfdxdtj 

where ee{t) = «.(*) - 0b(t). 
The relative errors are defined as follows: 

pp  _ He«(t)lU»(o,T)       RL  _- IM'.OIUMO.T;^) 

We observe that the rate of convergence is 2 in At (decrease DT to reduce error 
measure) and 4 in ^(decrease H to reduce error measure) from Figs.15 and 16, except 
for the small(^t, h) region where arithmetic errors dominate and provide computer 
limitations to accuracy.   It is this latter insight that is essentially «*P««W* £ 
obtain by pre-existing methods, but is easily established by the methods of this 
paper   We should be careful in saying that adjusting h (to achieve accuracy) is less 
expensive than adjusting At, because the rate of convergence of 4 in h and the rate 
of convergence of 2 in At does not guarantee this fact. Each approach to improving 
accuracy results in different amount of computational load, which depends on the 
specific program.  From Figs.15-18, we can also notice that if H «too crude then 
At reduction does not improve the solution and if DT is too big then h reduction 
does not improve the solution.  The numerical results indicate that the minimum 
value of REe is 0.7 X 10~7 (when H=0.2 and DT=0.00002) and the minimum value 
of REy is 0.3 X 10-3 (when H=0.4 and DT=0.00005). We know of no method that 
could give this insight before the introduction of the present method. 

We construct a neighboring benchmark problem to investigate the robustness of 
the convergence characteristics of Figs.15-18. To construct a neighboring benchmark 
problem, first we find a candidate discrete solution with the following initial 
condition and forcing function ü(t). Comparing to the previous case, we make a 10% 
increase of the initial condition y(x,0) and arbitrarily add a sinusoidal perturbation 

term 0 4186*tn(2irt/0.08) to the previous hub control «(<) for a new perturbed hub 
control. The error norm distributions of the perturbed case are almost identical 
to the previous problem.   So we can conclude that the convergence and accuracy 
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properties of this approximate solution process are indeed relatively invariant in the 
presence of these finite perturbations, in this case. 

SUMMARY AND CONCLUSION 

The present paper introduces an inverse dynamic method for constructing exact 
special case solutions for hybrid ODE/PDE systems. A multi-variable orthogonal 
function expansion method and computer symbol manipulation are successfully used 
for this process. The hybrid ODE/PDE systems with exact solutions can serve as a 
benchmark problem to validate approximate solution methods. This methodology 
makes it possible for one to rigorously determine exact solution errors and to study 
the convergence and accuracy behavior as a function of tuning parameters for 
a class of ODE/PDE systems for which the initial value problem is not exactly 
solvable. Numerical examples indicate that a rigorous error analysis is obtained not 
merely for one nominal solution, but for a substantial neighborhood of the nominal 
solution. By constructing a family of neighboring benchmark problems, one can 
obtain valuable information about the convergence and accuracy properties that 
are relatively invariant with respect to perturbations within a known bound. 

REFERENCES 
1 Lee, S., and Junkins, J.L., "Construction of Benchmark Problems for Solution 

of Ordinary Differential Equations," Dept. of Aerospace Engineering, Texas 
A&M Univ., Technical Rept.   AERO 93-0801, College Station, TX, August 

1993 2 Shampine, L.F., "Tolerance Proportionality in ODE Codes," in Bellen, A., 
Gear, C.W., and Russo, E., eds., JVumericai Methods for Ordinary Differential 
Equations, Proceedings, L'Aquila, Springer-Verlag, 1987, pp.118-135. 

3 Hairer, E., Norsett, S.P., and Wanner, G., Solving Ordinary Differential 
Equations I. Nonstiff Problems, Springer-Verlag, Berlin, 1987, pp.236-241. 

4 Hull, T.E., Enright, W.H., Fellen, B.M., and Sedgwick, A.E., "Comparing 
Numerical Methods for Ordinary Differential Equations," SIAM J. Numer. 

Anal., Vol. 9, No. 4, 1972, pp.603-637. 
5 Krogh, F.T., "On Testing a Subroutine for the Numerical Integration of 

Ordinary Differential Equations," Journai of the Association for Computing 
Machinery, Vol. 20, No. 4, 1973, pp.545-562. 

6 Junkins, J.L., An Introduction to Optimal Estimation of Dynamical Systems, 
Sijhoff & Noordhoff, Alphen aan den Rijn, The Netherlands, 1978. 

7 Abramowitz, M., and Stegun, I.A., Handbook of Mathematical Functions with 
Formulas, Graphs, and Mathmatical Tables, National Bureau of Standards, 
Applied Mathematics Series 55, U.S. Department of Commerce, 1972. 

8 MACSYMA Reference Manual Version 13, Symbolics Inc., 1988. 
9 Gear, C.W., Numerical Initial Value Problems in Ordinary Differential Equa- 

tions, Prentice-Hall, Englewood Cliffs, NJ, 1971. 
10    Lee, S., and Junkins, J.L., "Explicit Generalization of Lagrange's Equations 

2103 

37 



for Hybrid Coordinate Dynamical Systems," Journai of Guidance, Control, 
and Dynamics, Vol. 15, No. 6, 1992, pp.1443-1452. 
Bayo E "A Finite-Element Approach to Control the End-Point Motion of a 
Single-Link Flexible Robot," Journal of Robotic Systems, Vol. 4, No. 1, 1987, 
pp.63-75. . . 
Naganathan, G., and Soni, A.H., "Coupling Effects of Kinematics and Flexi- 
bility in Manipulators," The International JournaJ of Robotics Research, Vol. 
6, No. 1, 1987, pp-75-84. 
Reddy, J.N., An Introduction to the Finite Element Method, McGraw-Hill 
Book Company, New York, NY, 1984. 
Craig, R.R.Jr., Structural Dynamics - an Introduction to Computer Methods, 
John Wiley and Sons, New York, NY, 1981. 
Meirovitch, L., Computational Methods in Structural Dynamics, Sijhoff & 
Noordhoff, The Netherlands, Rockville, MD, 1980. 
Junkins, J.L., and Kim, Y., An Introduction to Dynamics and Control of Flex- 
ible Structures, American Institute of Aeronautics and Astronautics, Washing- 

ton, D.C., 1993. 
APPENDIX 

Submatrix Elements of Finite Element Method 

The local mass and stiffness matrices of the i-th element of the appendage is defined 

as follows: 

li 

12 

13 

14 

15 

16 

where 

M<;> = 
Ml

n    Ml
12 

M22 M 
Mi,    UU   M 
Ml

21 
A31 

23 

x33 

K« 
0      0 
0    K 22 

0 
K23 

0    Kl,    K v33 

Ml, 
ph {{Xi + r)2 + (xi + r + h)(xi + r) + (xi+r + hf } 

Ml
12 = [M21]T = Ph[±h + l(xi + r)        ±h2 + £*(*< + r)] 

Ml, = [M31]T = ph[±h + \{xi + r) - j-0h
2 - ±h(Xi + r)] 

M22 = m 
ph 

156    22h 
Tlh    Ah2 

156      -Tlh 
-Tlh     Ah2 

M23 = [M32]T = 
ph 
420 

54     -Uh 
13/i    -3h2 

K22 - 
EI_ 
h3 

a« — -r^T ^■33 h3 

12     6h ' 
6/i    Ah2 7 

12      -6/z" 
-6/i    Ah 2 

Ki 23 

r _ m \ -i2 
1K32J - h3 

6h 
-6/1    2/i2 
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where *• is the distance from the root of the appendage to the left end of the t-th 
finite ekment, r is the radius of the hub, and h is the length of the finite element. 
The matrix due to the tip mass is defined as follows: 

M« = M21    M22 

where 
M*n = Jt + mt(r + Lf 

M*„ = [M21]T = [mt(r + L)    Jt] 

M22 
mt     0 
0      Jt 

Now, the submatrices in Eq.(20) can be defined as follows: 

N 

M., = P}, + M?a    M;a + M?a    M3
13 + M<2   -   M^+Mf,    Mf3 + M'ia] 

Ml,+M2, ^■33 T "A22 

'^32 Ml 

MVJ,= 

M2
23 

M2
33+M3

22 

M3
32 

M3
23 

M33 + M$2     M|3 

Mfr1   Mf^+M^ 

K„i/ — 

Ki. + K 22 

K32 

K23 

K2
33+K3

2 22 K3 
23 

K32 
K3   + K 22 K4 

23 

[ 
where JV is the number of finite elements. 

"-32 
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MESH PARAMETER 

MESH PARAMETER 
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Fig. 15 Error norms for various mesh sizes for a fixed integration step size 
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Fig. 16 Error norms for various integration step sizes for a fixed mesh size 
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Fig. 17 Error norm distribution of 9 
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Fig. 18 Error norm distribution of y 

2112 

46 



cu a 

U 

u o 

3 a 
*S 
es 

u cs 
a. 

o 
JO 
o 

C4 

o u 
Ö o 
U 

c 
as 

03 

t/3 

to 

=5 "o 

c 
J3 
O 

3 

•5 3 3 

5       « 

o 

Co 

I 

< E 
o _ 

s-e s 

S.-S 

uT a, 

o. >- 
C3 "It 

•Sou    . aS'.jj ..  ra c_ 

^ ~ S 6 •= -° 8 o 8 '-3 <= 
0;5>»'cO<3^~*-tOl-'cO 

•a __-=; >, en o c 
u "3  co  co >> ~ o 

s &. 
■c o «> *- , 
E<< << 

Ja 3 
;s 
J3 -a 

7, S 

.23-0 

2 u 

<   « lO 
w o       co 

u- <? .2 a P ■: A "- c S -c -g 
Si u 

CO  .X U   en 

u  o 
■S-o 

I—I E 

2 .2 'S S3 g § | .| u S 2 

■? •§ «-g Jo - ° -^ ra s° 

D.O-0   C^iJ3W   co   C3CC 

oils £ o exe 
«•5.2 " o 
v o > S p i £ -s a •- 
|5isl2 
£R~ E " 
fe    u    C3 

•£ « «. N   • 
.S ^ " u M 

x> .2 75. >S 

W3 *-i   ea «*- 

So 

S T3 ifl 

§ « a 
•^   O co 

CJ    « ^ 5   O co 
W Ü   O 
•O £ ' 
«E; 

B * c 
ca oo ea 
co .5  >-, 

C3    t/J    tfl 

1! « 5 SI CO      Q^ 

■c o 

B3 s 

o< 

Er to 
81 

2 
o 

3 
.2* "S 

o u 
5 
to     .8 

M c 

to 

O 

o 

o %> 

g   a 
if- 

£ 

to 

c o 
U 
^      CO     S 

fell 

55 5fÜ 

« 5 
SS 
>"  to 

s-g^ 

Bi 

47 



co 
er 
o 
* 
_i 

0. 

z < 
UJ 
ü 

to 
g 
■5 m 
o 
cc 
u. 
o 
_1 

o 
cc 
z 
o 
o 
Q z < 
>- 

m 

CO 

■Si 
-o o v  £ 
«Ü _ 

o .£ 
° B 

■6 § 
en   o 

" ~.2 
o 2 x 

°   U _ 
3  O. ca 

x 8 .£ 
c "- E 
o -S o 

1*1 
wi cj 

« £ c 

'£ o = 
I £'ü 

60 > 

x .5 x —   v.   O 

«3.£? I 
ac e 
2 N ts 
^KE >» x>.5 M 

o 2 B 

■3 I 

c - s 
o   -S   - 

5   o> 

t-       5 ~ « XZ. «S    3 
O O t> 
C *"* H 

CJ £ -C 

O 3 " 
— o* 2 
> i_ -* 

Ä « ° *0 .— &o 

to -•   i- 
C ^ « 

=5    ■§ .a ! 

8    ll2 
co      cu * **- 

B    CO  

•a — a u .2 u 
fc.= c 

,CJ   3    3 

c 

> 
'50 
o 
X 

X 

.« B 

U 3 
JO 

Al    o 

■-   -   -^     u 

«'S ? 

>> •— o« •** ea  _ 
52 «so 

3 -S3 2 

C/3 

1 !«- 
H "55 

g-e - 
E   3 — 
•s C = 

CJ    CJ    £ 
E o-X. 
O   o -^ 

2       2. >,- fc1 

—       u 2 o 
oo     S--5.K, 
E S   en   g 
c   • a. c ~ 
o w ^, co -a 

c   co   en —   cj 
U     .  c XI   °- 
eö X" ° 2  60 
C?S"| 
•3- -r:   e .C   3 

C    in -o      •   Ü 

CU TJ •-■ .tS C  c x: — ^ 

XJ    o 3 **~- 

CJ   'crt 

Ä O. 

c   2 , 
.2   *" <i 

o ra a 

E »Q 
>. — _■ 
en ^^ *— 

!  c 

«s v>   c   >» C — *   U 

o 
II 

I 

I? 

I 

an 
t-£5 

; o —  eo= ^ 
: CL H. co  5. S '$~H a. g. co g. c 

— x: — u a u 5? y—*    n     CO CO C ■^ *^  S S3  cj  ^f1 

y O     CO CO C 
-O   —   ri   —   —   ^ — 

u   2 

O   O   eo 

-  O. »'s S  o 
5 o. «> ° 

° E 
° E 

-   § 
r u. u   - T; «   c 

£ ra •£ -a >.•£ <    . 
y >,^   O w .-:*-nin 
•&=-S   2 « >.C   g-O   C 

o 2 v x: c > -jz 
r^ fi   —   »"» '^ «   — 
x; - 

t-o'o-Sa-Sx E y 3 

8 3 u •- = = £ s 
a >, ° o g ~ x. 

—   en  —   -. '— X 

'5 "! 

« a >. o « g -s X « £ 

£      "SXu.-u   .-.. — ^ 
en — c^^;^,l>^XX-tii, 
u       oo^^fcH — 8 

o 
c 
4) ■ 

HI'S 

s| l-2 II >■! |s 
|-S;a«>aos-0'5. 

'S =5«= 

X     CJ 

o E 

W 

u   >, u "3  g X   — > o 
c " 
B X 

c 
3 

C .^; 
O    CO f> H. o 
E    M a. >* 
ej   co <— 

o to 
>> ^- c: c o 
u    O 

a. 
>i. 

i E c 
o 

CL 
u   tn 
a   en S T3 

.a § x a. 
u x:    . 

JZ ^ TJ  n 

. "a 
C    e_ 

JZ co   O c .,- c 

•cS 
> C3 o  g 

o 2 -a (— ^ u 

"H 
2 

•a c 
3 8 o 

ea   o o o c 
< «: 

C — c X   u 
II 

B ™ 
c 
o o x a 

* E 
•K "c b CJ 

3 

<u a. 
I» (- c >> 
CJ t/t 

C3 

-C 
>* X) 

c   o   >. 
~ '5 ° el   ä   u 

? Ö 

° 5 
U   o 
£Z 
o 

O X 

o u 

~ ~ c 

— -a Si 
X 

c > ? 
c BJ <z a. 
«J 

ä 2     a 
<-c 

>-: 
Q z < 
CO z 

CO 

o c i-a 
~   E t^?   co 
tj .2 "- o 
u fc £ ■>- 
S £ «3 a 
t> ™ — Cu 
en   3   O 

Cu «   =   CO 

.a  §  8 .§ 
> e- ^U ^co 
C S X 3 3   C   ^ •- 
B  h -n a 
_]   en   o   >- 

° t. nö 
D a -j > 
o  cj  — •— 

•S .£ a « 
O    C    CO CJ 
e g-i §■ r*. C   o 

ISli 
.E   O e_ 

. E o x 
> <— X   S   u, 

.   °   U   en   5 u >> E S -2 
CJ *-  c  o ^ 

OT = a -i3 2 
C X   en   8   E 

.   •—    w    »J    — *   trt   u •*   ea 
y.    «i  c u 

o ^  ^-q  c 00        !>   2   o 
O. *-    C    0    4) 
cn    OJ    o    <-   f^O 

n  i>  o  •-  _ 

3   ea   tS   O   £ 
cr J=  a   $ j= 

l§ 

o -o 
3 P 

ca ■■= 
E-o 

e*- XI 

CJ 
XI JU 

E 
tu c 

ca 
o 

g 
h eü >. x: 

CJ J= 

u. j= 
4J ^ o 

C B 
4J 

Ü 

Ü 
U 3 

>n O" 
c/l CJ 

OS 

H 

e    E 
o 

■o 

3 

W 

c 
CC 

CJ 
Q 

|| 
x> B 
rz  w- 

a: ~ 
u) •£■ 

n E 
t-  •— 

o   « 

< ^ 

CO  • — 

.a 'E 
H o 
c  — 
cj   o 

■S B 
Al C   «S 

*-  T3 

> 11 
o 

II ^—'   C 

^   A UJ   -? 
Ä    'S Al 

«1 

F fc 
3 

X3 
ea 
^-v b 

O* ™- •— 
a* 

R tu 
c/s o £ 
v 

V a U 
IM 

X 

o ' 
c-^E 

w  ■£" 3  " -* 
*"*    . ** ^ o 

II u 5i * — 
^-~ .2: = Hi •? 
"r"in ^ jf Al 
* o eo  ; «. 
C    C  =  e^ 

•2   « 3   V = 

en   X • 

—  ^ 
>-•    I 
I   ~ 

H 
c 

._    CO 

■^        CJ 

S     X. 
co   5 

x-S^S: 

ey .— 

•s s 

eo   a JZ 2 

£ to 
2 >> C   c 
X   eo 

•H£ 

CO'  C 2     B 

^ *  c 

.£  c I  o 
>%-_E _ x 
n  - ■=   O 

x; ü 
f-x 

B9 

E | u 

>^.x E •- 
C   ^    3    CJ 
£x=H 
O   >    S   v: 

o.2x 
X .-3 -X 

o.E-E 
CJ    w 

■"  X    ~ 

.as-"3 

CJ , 
:  CJ •„ x X 
! X  o  •-> — 

3: B 
B ~ 
U en 

I 8 
t/s ■— 

I? 

■5 .0 
5 .a      - 
x   - CZ) 

.t;    cj * D •- .=' _Q        a CJ -o 

t 213 
8? " e 
<   E- 

5-g 
rz\   ea 

I- !«     C 
■9. u   an 
*— *".   C 
3 u .£ 

^ O   3    >s O   S 

» E B = f E u B  cx  „ i: 
E u  n 2  £  g_ 
- o c ^ -2 = 
a >» c 3 B ~ 
o o S3 3.3 e 
5 o  t-  o   ^  c 

•= Ar £öo 
t— C3    —     .        U.     O 

o ä _g  -5  c -a 
usf E?gl 
u o x 

CJ   3 C3 
x   f.   CJ 

3—0 

x > J-C c 

c "x -a c — g 
3 ~  CJ . «J E 

-2  3 £..*> _ 
3 S h - ~ B B   tS    S 2 "3 3 

3 s ° •§.-= i **-    «    CJ w    o O 

s s-s 
■2 ^B 
033 
= E ~ 

eH £   S ?3    3 
g§8 
cj-gM 
ca ea ^ 
_ t, -o 

«o —-   c 

^3 S3 —. 
c r;CQ 
ea        _: 
•ox—: 
e.C« —   t   u 

CJ   ' 
en  X   c: 

Jo 2 &>| ^S1 

vi   C   7*   3    ca •-* 

s 8 8 € £ S 
2 o 2" 8..E S 
">   —   —    c   —    " 

-    «    O    r    «I    " 
3 3    >,-   c   2 
'Z   ° '—   B ~ T) 
.£ ^ x g 2 g 
CL^> en    £    § ■£ 

X JU   CJ E O en 
C3 3    > oj (^ — 
"~ CJ •- 1- .3 p 

CO 00  B c C 3 

ijlip 

48 



CO 
et 
o 
tc 
_l 

D. 

Z < 
HI 
o 

CO 
g 

CD o 
cr 

o 
tx 
H 
Z 
o 
Ü 
Q 
Z < 

U    4>  *0 

M-g   g 
•Sog 
t- - Si 
ocE 
£.2 <» 
§3.5 u E e 
«=3.2 

o M S t"j5,"3 
8„cr 

2>Z 
^   en   i- 

•P   CU cu 
3   <fl "O 
C ~  o 
o« > —• 
Ss~ O 
S   >^ Ü 
«  oo cj 

ill 
en   ÜT3 

ö *° 

u 
Ü  •£ 

«*§ 

HI 
5   e   > 

3   O 
«> -c P S-S-I 
3-:3 

< FU 
i— (/1    CU    u. co 

° a -s 
Z 'S  e 

u  o 
•o  o 

OO — 
It a 

Ü   3 
P    rr* U ^ 

■O   «> a .o 
u *C 
O   U 

■»■S 
O U 

■5 XI 
t~   S>> 
o o 
u E 

iJ 
c o o E 

«= •£ 
60 O 

.S >» 
•o .3 
c r= 
o .c* 
Cu o 

1-1   o 

eS 
.2^ 

i.l 
>» 3 bad 
«3 £ 
g S 

x> CJ- 

to  3 

o c ■ o 

E^-Sll 
"- 5 >. u 

~   « "3   «I 

?i        O       O ~ 

o .£ 
T3 

I« 

x: .3 •S     -E>£ s E 

« !J 

o • 

o. >» 
E Ü 

S.P 

.3  c 

.- <s 

.S  o 

.S.S 
""*   en 

J.s 
—  o  < 
J= °-J 
a Mi 3.s * 
S> §• 

"5 " > =: 
« 73 

u E 
o •;: 

U   u 

« .22 
to **j 
c — 
3    r 

: o 5 1 

.- ai 

; -S ^ -! 

S ° ■ 

!   e   c   i. •— 
u 

E.<" 
o   > 

i_xi c S 
t5 "c 

=   O    C x> "" 

E _ 
3 -a 

—  o  a x; — -"=  <2 

gE 

§ g: c E : 
^•— ■ 

3 S 
T 3 
U 5) 
flj O ^ «* 
'^ 

■a 3 . 
u S ; 

xi o "■ 
C    M I 
o *C  ! 

u  a": 

.2 "" J 

^ M ! 
o • 
§? 

•o 

F 

—   3 

u * 8 
>. w> n 
u 
x: 

Si ^= 

tfa- si' 
o *~^ —    o 

■ 5J : x: «> 
« o x: 

o t*_ a a. ° ' 
: a. >. ] 

>   >^ 0) 

j   O   U ' „ 

i -a 
o 

, § e : 
■    r-    O ' 
> Ü  _C : 
. x: •= • 
> t to" 
3 *-< c - 
> oo-E: : 
i c * > — o 

.3 —  a   0 i-c   0 „ 

= — — c ts • 

£ 

x:  <u  o 
a  u ■ 
.5 x: 
^ H ■ 

E .fi II 
o O 

C3 A VI 
0) CO H H H 

H «1 i i i 
>% 

1) j_* .— ™ 

S a 3 *~* 
^ Cfl 

es 
F J= 

3 3 

B 

u 
.-2 

CO 

2 
3 ^ 

JZ U C 

H CO 

o 

a 

8 ° 
'5.2* 
t-ä 
a <c 
oo -E 
c 
o = 

73 « 
•a oo 
u c 
a p 

C!: 

a a 
W    UI 

H    H 

u> u.   _ 

B     « ° 

ÄS 

•S3^ 
>» ST. 
2 c < 
2 ZT S 
v»  o  ; 

—-  c  < 

i .—  i>  i 

;.E^ : 
: E g>! 
; p-E i 

oo s. 

c E 
«> 5 " ."2 

x: x: 

■£ c o 
o *S 
x; : 

u - 5 a 
T3 is •= y 

C      Ml      C 

ex 
x: 
u 
'£ 
? 
E 

^   ^J.    ^. ft) 

,     CO  »*- 
J  o  o 

1.1- 
bo o   1>   3 

O    u 

3 J3 

o S 

" o 

nö       ü -S <     a 

P    *- 

.5 E 

^   fV   »-   — 

>^ V Cl 

Cfl 
3 
O 
3 
C 

■5 

o 
5s 

O 

o 
CU 
D. 

C Cfl 

O 
o CJ ** ra > -C 

eu > 
X 
tu c .??-d 
V G Ci >^ 2'S 

U-. 

11/ 
H 3 

e3 

w   o 
f. M 

JD K H ~~ H E 

S. p 
E 2 

Cfl 

a> 

Q. 

E 

G3 o o n ■£ 
x: 
H £ "3 

_    00 

S.S 

o 
x: 

o 
II 

o 
A 

o 
V 

a 
Cfl 

E 
00^ 

a c: 
-1-  u 

E^ 
(/) x: M H H 

o H 
3 i> Ü •:=> V 

a. 
.— 

;S I— Cfl >. c 
3 
O 

*> 
E 

Cfl o 
o 

fa 
.2 

CD . E < c a. JS    3 

c x> q) «5 £ 
u 
o 

X! 

H 

"5 
O" 

u 

X) 
.2 
c 
L. 

t4_ 

o 

*£ 
o 

E3 
3 a" 

•C   t> 
X>    4J 
—    3 

H fr CQ •3.y 
a- c 

CO 
'C 
o 

2 

>-" 
Q 
Z < 
CO 
z 
Si 
z 

3 
o 
XI 

C3 

C! 

.s a 
■E » 

T3   0> 

O O 

II A 

O JJ 

^ Si 

3   <U   C   jj 
.2 •£ .2 .3 

■■5t= |<i 
c . 3 a 
" .3 o .E 

g <n -E •- 
■S u <C .3 
n 2   "   c 
COr^ u 
U fc o X! 
c <u > — 
3    "> -5    u* 
2 u   o — c > OO c 

° -3   3 'S. 

15. o "*" -s 
c ^   c  a 
3 O    00 

"55 2 -  fj 

S3 1 5 
o   o   c 

•O   oo   Ü    „ 

§-M:i 
*- Ä  «>    S -r x:  3* 

^.      ^ 3-3 rH "w      =3  u  S -3 

c; 
Oi 

H 
O 

£ 

S   «H 

•S» H 
C  <" o- 
o   >>--. 
•3 73 "-> 
a c c 
3.S E 
a P<2 

■S   3    O 
o P '5 
t-   o    ra 

E  1"S1 
^ 3-ra 3 

» "> .3 <u 

S     D xi H 

a 

v 
u 

O     .  >   tfl 

.ts ^»  *-•  c 
*g u; .S2 .9 

8 *S g 
.3 c   « 
.S o .2?- 
.3 <—   VJ     • 
to     ^,T3 
O O   ^ 4> 

°- Al—   E 

-Äg'-g 
!-  r-l    3    "J 

w *5  c 
cu c   o - 
« ea «*—   ' 
c c o 
^ ■Sv >< " 

« 4)    O 
> c u - 

c2 CO  ' - •- c 

O Ä"« 
ts o  o 
3 §   S 
'S u'C 

E-S 
E u 

Ü 

c S 
I—.    t> 

Cfl 

a 

C3 

cu 

r o 
o •^ 
O.T3 

F ca 

H 
o 

o 
A 
H 
OI 

I- 
H 
II 

S> 

vt   i3 

3 

X 2   S 
":      *> 

; T3  "3 
d    flj   — 

— £ t u o      Jn x 

<u  c  >-  S 
OOtc g 
'5 u .2 5 
u"°    ..    3 

J^ •= "3    Z 
a   to   u   — 
— o  •- — 
o   3- ,, >2 

00"3   -*    3 

*-• 73  ^ *~ 
"3    " 'S   — 

Ü =:  «   E «r   c    w 2 E 

- 5 "a  ° C   O   c    oo 
a>   3   3    c 

X-l.S^J   3 
•c  a- 3  u 75  2 
3   u   «   5 C.   to 
ea   ._   C X) ..to p .!2   3 u   3 
*-*        i« t4_ x: t> 
0 a !! o H .2 
"5 s 'S c ~ - -o 
1 o 5 % E 1° 
E «8 g" S = 'S 
00 .5 -— t« ^  o 

g § 8.' -g S" 
.Scot  S» 
Ä    « 'C    3    00 3 
Cf-a S-  S'-c 

£, .5 Xi .3 ° 
3 e    II 

•r;   «> U   rj 
a x> o -a  H 

n > 3 E + 
. —  a  to  w 

£ o- E •= .5 
a  u ■- — 

+ to  ">  S   J! 

Ä "Ö -3 x> M 

ii £ 'i o p 

A« >>•-a 
t) °   • * 

■°    •  "  e  >. 
g^^-p s 

+ .E ^> .§   fe 
"^3 b"°   N 

^   O o   O   w 

II -c ra   > ■ 
" — CL. « -3 

P.  o — 
u 

3 .P H o a. ■n -o 

s OI >    3 

^- T3    C •£ .3 
0 ä.2 o "". 
to "S   to   t-   ü 
e C  3  o  o 
o o " E » 
t^    C   ~   *fl   <n 
C.2Ö«- 

•^ i s § 
4> c * y -— «   x; o - g. S 

E    »£.E»E 

«lllfl 
35*       52§.S 

cat-    t    ooC^CüüU>, 

rP-.- C£< a s«s ooS ss 

o 
x; 

U-   — 

•a P P •S'8°l§^'|.l|s'| = 

3 % % B-V. S  .5 1 a g- oo^ s IÄ E 
U      S3.,      . 2 x:    u    •-    O   *? 

.h    3 e 5 g -a ^_ -      o " 
a ° 5 
S3 .52  5 

,0 t^   a     • 

•— cu -— 
g io-5 " 
too 

S-3   5    "SJ 

^'"]    g_    fet_    3    ooCut) 

o 
3 
3 
O. 
a 

5 

o   00 3. E 

._   -      "3 t; 5 o 73 o 2 ° 
g e * a .8 2 ff-g § g s g § 
°23-3"-cEö3-2-°P = 

— ._    r\    ^»  Cfl    c 

E -3 I £ -o -2 "3 

"    t,    ra 

^"■SSEKSX-I-IUIIQ. 
" 73  S> .2  u  t.  ><"u.>       ,2-3 
S -a -s -S a ? "     - 

p 

X! 

■s-i'ss'lS.cl'sI.isS 
" -g .2 £ «a S3 2 "i "g a g E 2 
g 3 2  op^ <" -o =  o „„•« £  e 

3 H       s= 
5 - E c 

o   " 

en 
>• 
o 
c 
3 
o. 
3 

5- 

<«   ET >  ~"   1 

^üPoH-lg^E-giS-S 
u
,-g-Sö-gS-3»Pra,«3 

■S g^ s* | § ä «". J^ ST 
P 5--73 3«s»..!:sSE «j 
S .S-73 P -c s -g o a »S 3 •= 

— ,_fl v^.    —    L_    to "3    to    ÖJ 

■s-sSg.-S'S-si.SS.Sjä 
gS-S^kTssj^p-^s-S 
c?5-suE-s5 Oi§« 
"SJ,s5§«sl*8 >,-a - 

Bß 4J    «^    "    cfl    O JD    ij    ■ ' eucflH-ÄX1** 
_r-    C    C    ** r1-   ^   ^   wi 

-  <u 2>: 

§ 8 s -- & 
.S   U    O   X    3 
DO cd 

a0-"^^ S3 £?S 
_ 5 E„,o^2 u s K 

49 



o 

a 
z 
< 
5 
UJ 
o 

CO 
g 

£0 
o 
tr 
u. 
o 
o 
tr 

o 
o 
Q 
z 
< 
>- 

DO 

CO 

a, 
E 

<S 
^v. ^^ 

MM 
H 

c 8-s 

i> "«   A 

.3     C      «N 

Ä ^   - T3 o   —*a 

•s __ O   oj 
a 3 •o ^ o o c   . 
CO 

_J   .a 

o 

Ü   ci   a en 
en _o      - en 

S>°° 8 d 
_.   CO v o   c 
— 3    4J 
«   a  n; I« tn 
GO on    u. >, >* 

O ^«= H   en 
a O   « « £ 

i _- xi a. — 11     ?£-S &C 
H 

C4 — 

•5  a 
^„ x   eju 

E O   CD 

g sou 
.§■3 0.8 

3 »*  c—  B o  to a •£ 

E        rj   to 

S-2ÖS 
•a B H = 
§a *■■; fc  ^  !=:  c 

•3 o>2 « (9    = •» 
CJ   C   ^ ^ 

•—   3   C O 
"  o. o    . 
>» a S O 

co  a ■£  o 

.. 13 ° •£ 2  5 —  o 
o-S 2^ 

H, 

•i 

o   W 
2 >>°  o 
E =   en •- 
01    C3    O     m B § .§ I 1 

' 1 l-s § 
~ ~ Q- >> a 

.a ep E "a a 
i: .E >* c J= t» -a jg a o 

.a Q. 5 3 s 

•f «2 s-§ 
C    ~     en   —1     C3 
O   >*•—   en   .3 
\= -O   _-   3    o 

-VES2 
■= * .5 2 S 
O   . I- 

3     ?^   t/5 

^   O   u   a   ° 

x:  1.- 

.  «-§.2 

c H 
B II 
f) 
C •K 
O 
B 
CJ H 
to 1 

+ 
o 

X. 
Cd 

SIS 
■ö:.H 

'■£ c 2- L E tr 

X'S — T3 
C    c   B 

ri CO tfl      - 
u. .—    tu 7 s _s 

~        K 

Ö. s   -H 

eo.£? >» 
B    *- 

11   -5 

-i7     > MS 2 « « c 

to   o **  to 

U,3   C .s s 
to cc       _ 

—   o   o 
a..—  CJ — 

•£ u ü c 
«- £ c s 
-—   cfl   trt i^ 

60 O- .2 u 
«  n  > 5 

•— -^ o .£ 
y = S '= 

•>  = c 

0 'Z — 
_■ "5 

II 

a 

.S       Ed 

en   tr. ■ 

.a 3 •& = 
> £ o a. 

+    •= 

+ 
C4 — 

■ c zr  uT  u  <u  o 

•g s I -g .E 5 S1 
0
 sz   S   E   ra  o   <- 

<u "   o   O C   1-   u 

**  o    .   T?  °  3   « 
. u Z .5  § K .a 3 

y    .  to E  a C  D 

1 -1" — .)   «> 7- a  a 

.5  »1 —    - 3  o  u 
•2" 2 2*ä; °«fc-o 
„«_   ü    0<3   M 

■£ ° a = c S 8 _ u t:   a 5 £ « 

titSila 
§ £ 11 "S 8.2 
•c •= 9* 3 o M 5. 
— w  .-  -   „'  c 
3  o a   E  3 JJ  n 
?T2 u u= 2 y h 
"is ° "° 'I'° "§ 

§1*1 

■£    >    4>    C3    ca    — 

t* O    O    Ü Ü    « «4- 
+ w   O.XJ    CO-C    O 

o>  c *i 

f E 
S 8 
55 
« to 

.C  c 
•S? 
o o 
0.3: 

.2 <2 
•a a 

E^2 
3    "    >. U 

u-r   «   " 
_   u    3 
—   w   O 

2o^ 
3 J3    3 
O   —   C 
u  « .- an » 
.2 -s; »3 
-= .S £ c —  00 

s:gi •r;  eo  a 

e »3 « s 
•3    t0 •5 o 

oj  a 

n. a 
el 
O. 3 
>■. ° 

■» 5i 
■_" 3 
OJ » 
> 1) 

? 3 
o 73 
K c . o 
oj <J 

O .L   .. 
5 £■£. 

2 « 5 
a  «^ 

E     ^J ._ 

.3—0 a x> o a <— t. n 
• - iE  >>,o to 

3   E =   >,J= 
al  a .0 ,ti *- 

~    OJ    w JD   o 

5 J.E2I 
OJ 

11^ 
■Si I a n 
X) a eo 

5   o   OJ 
"i>S 

« J to 
■i-        u_ 

•a -5  ? 
E    OJ 

S   ?  = J: 

_ i:  u  >  o  ;o 
-   ■- T3  a •-  3 

füSfS 
— '3 — c -O 
^ 3   a   ^ a 
^:       ■£  a oj 

C3   oj t- 
3 jz f-^-a a 
5 - ^ c u 
a   1)2  B J 
S S - Ü CO 
E - Ü O 3 
„ 3 OJ .3 =E 
.2   O CO   CJ t— 

^    =    ° 
>-2 = 
CO 60 a 

TUB 
co   >-    « 

■>ü s- 

o 2  c 
£2   co    O 
w S 'to 
«i 3 OJ 
OJ T3    *" 

B   a .o 
o Ja 2 o x> " 
« 2  § 
<_■ -13 

J= a c 

S   oj  JJ 
rs   u £ 
3 .5 3 
OJ    en    CO 

Q 
Z 
< 
CO 
z 
St: 

«  ü 

J2 S. 
J3   O 

^    a  I- 
E   SO' 
OJ      ^60 

oj    a  > 

J= .a o 

stl 
S   E« 
a CO 

_    a •£ 

CU     GO O 

a 
x> 

CO 

O     ™   a 

E 

% 
H 

To 

£ 
o 
V 

^SajoKojt? 
>    O    r-       ;      -    ?J    »-    OJ 

E   i; 
O    3 

OJ ^    E 

jS  o .2  a  =■  o jz  _: 

ü i-l at«i 1 s 1 g-Jä 
8 fr§= 2|>--s = .2 E 

-E u 5 B "- 2 3 
EOJ    "Y D. E    CO    c 

«, ^ o 8 1 S .2 
O   «»§..«   S   a G 

^33J=.0¥£B'S   ^.O 

c.Eo-c--~c_ 

T E 2 5 o J= 

•5 -3 .2 S c 

El = 
•c S 
.•esc 
= =3 
cr >. 
oj ^« 

CO 
OJ   3 

5E   O 

-     H    S 
O       -a 

-   . 2 -o 
t -o   en   E 
3   E    >    P 

O   3    o 
CJ   o   - " , 

3 £ 
>.S& 

? si ä   3   E   OJ 
g -a 5 ff i •£ 

8Hc- 
•- "• S .E en —   CJ •-" 

>»•= -H S t3 M = 
-t^    ^-     r\    ^"    (T     _T • — 

5 -2 £ 5 = .2 E 'S 

E   o ' 
&.2 .E > 
OJ  —   M .t; 

G 

5 E J= 2 
"   a   >   t;   en 

■—   en   B   en   O   J5 
en   3   3   nj ^"   t- 

t.oj*soE"Ca—  Ex> 
en.       P   —    cnJJ.io'Sa 

a  « 
£2   en 

C£»     OJ     (U   -. 
a)   r   0) XI   >U 

OJ 
C-     2?     !>^ 

^02 E^O p g   O 
o —    - c E oj 
'5>e^   B " 8 •- JJ   O   S E —   o 

g * a -8 ^ o a 
° 8. E « &-s 

U3£   aS    OJEUg 
c;'  ac  «•: c  c  » 
8 g «J- •?•§ S.spo 

gd5.-"-ojöcE- 
— .2  3  >» 5  i:  tä a 3 

i5c.Eo       u«>g'» 
« ,3 " T    p-  c- ^    E    en 

§t °|1 2-esS 
CJOC-2O   oji=°E 
«Er-X;1-    cnE^ca 
OaS°-!SoE:2 
E Q. > 2 2-2 CJ o a 

Ji   2.MX!    en    CJ=   «   °° 
" -J  a-^-s-^fj 
2   OJ   c-   >>"*   C^-— 

Hi :i -s i|§ 

a 
»E?? 

E   « ° s _   U   O 
CO   — T3 

-cc  E j=  a   E S ~  g 

öSiaUS-l'-"«* 

2:EE»«iSgS-£l 
»%26.ES^35?' 

-'S-SSsia-So'S-s-S 
j""S""c:>.°,o0 

^   ^  £    «    r,    v  .5    t»30>»rt<?'—v »r-        m    —   ■<—    ...    i?    3 
Ä    C3 .-* TO   , fc- 

4J   *S   .P 
*-      eJS 

5^-? O   y   ca   (J   »r a> x: _ sz  o 6 •=• 
0.2 

= 1 
>^o §..2?-3  " a J2 § 
J H So"""2  ><ts 9-2- 0Jen5,ccn^3^><a 
^   en     l —   en   c   CO   OJ   >» 
-SJ«8»EoJ 

■S3—   »SgXc-t)» 

S E I ^ E .E o S - 
cD ~«=-o.S S C u §; 
o C3ocOB5Ea o E2aüco.o — ■ 

o 
cv _o 
o C3  V- 

ea 
3 
CT 
U 

"e5 

E 
o 

g>E 

'5-1 
E u x: 

c r3 
w 

2 3 
XI •£ •a Jj 

& C/l 5 .a o 
"-o 

I— 

1> E 
(A E 

2 « 
T3 "_ 

a r= 
3 5 

c 
"■5 (_• 
o 

o 
II 

to 

to 
tU 

to 
OS 

CT   ° 

■5 •- ■ -    3 

s o 1— 

tU H 
> 

o -o + 14 
?3 °" 

c + o c 
o 

o 
t/) 1 

o TO "o ^~* 
c 

•K 
'trt 

C 
tr: II S ll 

X> r* •s Ä a 
c 

Q. 

JLJ 'H fff 
X) 
•a 
u 1 

ea 

> 
o 
c 

C3 > 
"5 
CT 

T3  ^ 

X) 3 
CL 

C X) II 5..E 
DO o C3 H *c x: ü .rr 

«u =H .!? «> •H ■S o 
T3 C/3 *-*    tJJ 

E 
tU 

6J 

3 
»> a 
j= 3 

I« 
CO o —    tyj OJ >-. a >* 

£| 
S •S a 

4> 
«  J= >u H    M >   to 

E   OJ 
« 3 
X      en 

W      O 
U 

> 
o 

X? 
o 

oo.c 

O    3 
2 E 
>».3 

u C3  >—" 
II .2   3 

Q 
x: 
H c * —    OJ 

50 



=     s c a 3 ■= ** s   '5 
B ~    B3  " a"Sx>       2 

CO o 
IT o.   r 
O 6 u. 
h- >.— 
3 co   « 

22 -> 
a. j3 a. 

7 < * a 
i 

s §. UJ 
o < >> 00 a. GO    ft) 
CO u c 
O -5 « 

fc m - -«; 
o 
U. 

.9 o 

O 

o 
<2   to 
£   > —  p 

IT >• u- 
H XI   60 
7 O    O 
O ä «j 
O C   — 
Q 
Z < 

ca —* 
<■»    B 

si 
ffl «T? 

CO 
UJ    B 
fife 
o o 
£-s 

S-o  P  S  a f- c c — P. s c e    - o  o  ca  e <o 
u   60 >. r.   cr 

ca 
t- 

•O 
B 
3 
er 

d JD   e  "   >   M     •   C 

V *» M W **■■  •—. 

« ü « ? 2 S      "c 
m  4)  to  ?-» o*_o        *- 

u 

'S « £ o .-p % £ 
UNOco—   c?«-'c-' 
>,-C X   1> X .2  üi   u 

SB'COSBUO 
«a .e  ** eo-5 *5  c  u 

X   >> »   „   u- a S 

- P 1" = o § «? 
■" 5 - to u x ,_- UJ , 
38 = .E^I««r! 

.tr 
tC to 

•o F E? 
> 3 

X) 

c o 
a) 

o ä 
3 
cr CO H, 

8 S 3 2 u 5 ■ 

B e * S JS"8 i| 

J5| g fe *    1« 
o  >» n. >    .  60X  e 
5- & I JJ -o S I 

B   n >S X   P   co   P 
OUcn^BB"-^ 

5 c   . .9 ■§ .£?= g 
co>*P.ti  w  22  >*P 
£TI   »■O   >».S   £ S 

o 

H 

^ 

H o o <e .- .- <ü      <K 

£ 3 u 
c—   o   *■ 

. ~   <J 

.*%£ 
a ° ° 

•8 US 
If * 
E c co 
to .££•— 

»— "C p 
to   O   — 

^ u is 
- ^    o 

•«c 
a. 

+ 
a. 

." "i CT 

o UJ 

ca 
B CO c 

to o n 
Cl) 

a. VI P 

•~* rr 

•J UJ 
CO   o 
C    cj 

E 2 
E >> 
O   60 

Is 
■— J= 

3    C c a 
B    O 

x P 
I « 
ii °: 

/—, >• 

•=5 '-a 

t     u.    CO "2     •     > ISs 
2 —  S  »i  P a is 

.9 5-..S ■= « tvx; u u g 
§to<cS-6b£   M-    „   O 

Ol 
I 
II 

a. 
+ 
a. 

 ^« <"">'"- s 

■S-fSsfaif fit 
&g" « > So M P 2 

"c^SSoP.ri^Sö- ■£"S5g.5?g-uj 

c en » 
5 

? 5 Q 

**3 Vi 

to 
i» J= 
^ o 

J: 
00 2 

en —   > 
1)   »   O   ° 

-     ~   r -1 
_     C   M     tnC*3^J     r-     w 
E-— O Q_   —     <=t^     3 5_    •I/,-3UU-3cjt-g. 
OBS-^.tJ^OQ. 
C ,        ?    5    C tC    CJ H**-  o >._ vi si ja 
on*H--'t:uQ-   -B 

S-sll|al«^ir 

S    H   n    2    «>   S .. .3    c« 
P   O   O   o 

_ Ü   u  — "*- 

.*£ S.-g-aa|* 60^ 

3[£ B >       cj 5-SC 
rO*H    8    « CT >• B    g-c»^ 
^ CBUJBCOIUOCO 

it 
E ° 

-n s 
3 O 

C 
ai U" 
BÜ c 
tu 3 

o 

+ 
U   B 

■s »• "    B 

— o 

> «J 
o -S c w 

3 P 
D. O 
B .- 

"J 3 
U To 

O   «J 

»rt     w     C« 

O      C     O 

x  -P 2 |u§ 
C   _,     to 

8  «-a fc  u 
S «S p 
O   2a 

.   CT 
■ UJ 

-<.2 
x: 

o 
z < 
CO 
7 

id 
z 
3 

c-   CO   *2   Ü   >^*-N   O 

P "S        ^3   P 
•P   g   u££   O .P 

4>   r-   —   o —•   a   c 
■= C .S u ">-s. o 

ü j> -a >. E -I 3 
B -g >-S S " 2 
„ 2   cd •-   co   3   « 

2 = 2?S S^ E 
o g -.= •- •= — u 
ca > 3 S o -a <" 13 o -B •£ ~ « >- (-   u.   *- C T3   c« 
.5 a, •» >. a 3 u 

-uSaaÜJ 
££•£ o. B P ** 

s g o >»-S " «> 3 o »J -a = «-o 

E -J o « « UJ .2 

E 2 S 3 "3   • c 
° E -a P > 1.° 

U    i_   *-    4)    O    O " 

H on -= a o p 2 
SZ   c   C   vt  ~   (5   co 

tl o "3 2 2 x u w-s _s °- E u ^ 
•r;   c-   O   o   i-.   o CM 

*    3    C   P   O C    O 

=3  >3o-  KB« 

s|SSSS3ü 
>,J2 — S   S   ra   c 
j B -t; co a. 60 3 

CJ 

E   3 

o 
A 

^5, 

B 
o   m  i 

II    H 3 

60 

O    c    3°~—    ><3 -S S 1 l« o a g | 's I t-B Ä j .11 
.2 = *5 P c t 5?"= 

Ü    °    n   P >     =    -3-=uB-= 

■_    co  •=  -C    w  J=    «5  -S ö"c33iäc:g2 
■= 'c -S = '■= 9- o ^ c 

<=: 2uüi)uHi- 

S  E  S  2^3^ |-2 2 
t«   c   5   "   "; 

"C   C —,   3^:   w j=   « 

S S-3-af^J- 

C   Ti\ ^    Cl« 0    B    C 
60 

H     .SrS 

H 

3 

3 •i H c 

tU  — 

2   o 

T3 
C 
B 

*3 
I- 

a 

o a. 
to 

to 
C 

X tfl    3 o 

II 

u 
p E " 

3 Ü 
o 
A CO 

c: 

5 5 O 
"to Ii 

vH, X) 
U o 

H 
t- -9 

^) •^ e3 > 
tu e 
o 

CO 

5 £* « E ■ 3  3   £   O   P   Ü   s .2 
•p K <- B ° ■- &-0 

•P   H "~        S  c  a 2 

BuBH"r-jO--0 

•3    P   <•  J=  "*-    -     B    J> 

" -iS c= or 
" "So-2 Usff« 
i     l) .—    C3    (A     l— 

Si£ S o"d «3 2 
a.« Ö ".o-HS P 

B 8 3 3 8 <2 £ | 
^ s ^ o c^ .y P 

g 5 -5 13.-S3 2 8 

E o 

.E   c 

^T,     o o 

•Hit:      S 

<" 
C3 

o .^ 
8 ? 

60 

C 'S 

U 

p E 
J -S- 
■s S. 
i" >- -- o 
13. CU 
XI P 

2 3 
CO . 

O  T3 

O X 

o. o 

"■S 
•= E 
'v\    V 

>    £    v. 

X 
H 
> o 
p 
3 
a, 
M 

5 E 
P g 
E o 

o 
c 
3 a. -a 

J o 
U 

3 rp 
O. 3 
B  a- 

>* CO 

l_ X> 
°  S <u  ° 
co   o   S    —    ÜT 
c x 9 -_• H 
u  —  —   a   c 

£ 3 o    • -a 

-- '> ■« £ ° 
u 3 -2 B  " 
3 ° •£ E B 
B    2 •—  —. '-^ 5 x b    3 

2 .* x 2 .2: 
B 

*~iM 
C3 Cl 

tU     CU    1- t- 
-C     3   CU eU 
—   •—    C C 

_>^   >   CO CO 
1)     4J    CU tu 

_>    eo^   O 
'o *« t!  tu 
O   -n    O   to 

K    -    a)    u    Ü o   B  5        !: 
•-   ej —.  *2   ej 
.    CL O Xj  X! 

s  a " „ -a 
«   »2£  «> 

—    3 **-    co 
O ^^   3 

O iin O    co  w __ 

j! U-,  u    . -a 
§.4^3 
-©■Ix _; Ü  ' 

ö ^-i        -a  ■; -^ _   • 

o 
c 

B    ° 

i "H 8 ° E 
SSt8» 

S-s s5ö 

ü -cr  B .—  o 
BJ   <_s   C-.    CO     Cu 
c-      . __   C    co 
a. cr-3 o Ji 
« w3o £ 
X v-, w. J5 

Oj    B    ts» 

CO 
a> 
3 

B    "< > 

5 3 -3 3 
Cu S X 

E S3 E 
O    P C 
cl    a» fü B    O    S 
CD   °0 

- 2x 2 
5   ° E £  p. 

H  3 -cr   B 
UUP« 

■SS*«« g .2  ° x 
y    ej   --   co   co 

B .5? o S S 
J" rt    O    Ü 
^   .-    3    ü    Ü 

tu   u .t:  £   £ 
j:  ^  o   to M 

$    C3 ■£ "5 "S 

51 



o 
o •u 
1- c S < 
_l w   E rs « 2 c — 
Q. 

7 < o. o -a 
111 ?S 
O 

°S w 
o 

CO o 

1 « O    N 

= 3 
rr 
li_ •S  § o o ■£ 
_i 
o 
rr 

E ° 
O   60 

h- to   ra 

7 •a S J-; 
O 
Ü 11 B 
n SL-g F 
< 
>- o  c tfl 
i- 
_i o  o o J= 

m 
*{Ö      tU 
o   _ 

c 
E 
a 

u 
■o 

CO X en 

E p o  c 
Cd o 

tu Ji 
Cd 

5 ■" 
- 2 

x o 

1 g 
21 

— X> 

C 0. 
o _ 
oo £ « 
S g 
•S E 

E Ö 
o c 
L.    V) 

— —     x 

I       I 
I 1 

II 
&5 
c 

73 *o 

x: *"* a> 

a. 
OlE 
**— 
o 

M 
X 
a) 

C) 
Wl 

o x: 
.c 
o o 

> ° s 

° J o.. « 

—       M 

1 I 

II 

•a a 
■S-S H 2 

a- 

eg 
3 
or 
u 
> 
o 
c 
3 
o. 
« to 

»-J   o 
u '5 

2 8" 
E " 

"■J 
c to 
a "5 

^ S3 

•II 
£8 
™ J= 

.= to 
ts .E 
■§ * 
«5 

o 
II 

" - II 

<s I c 

d. 1 n 
■* _ **- 

■a 

7   I 

CM 
I 
II 
n 
Q. 

fi ItN 

II      ' 

« I 

.2 -I > 
'," a« 
^ E5 
■C ^    3 
S g | 
E   U    u 

-E ö 

Ü   to   t« 3 E c 
?! = « 

Sg|gg-tJ 
S °    - 3 MS 3 

II 
a. 

S c « ■s g a 

.2 ^ *Z3 
^ w 5, 

-1.2 2 £ | o£ 
E«J u ^ u x; »> «> 
w  *-   cn   ca   .r       -—   o 
CO s~*.  CJ  'g   i-   u   "   C 

UA=3 s.8 e £<£ 

g   n    - x) o « 
u   m   G   S I 

S30 

ES « cl! 
u 5i o j  u 

c a E ^2 sp «> ä 

II 

w 2 
•H S 

'.-5-£ 
S .E 3 ~ a ^ a. B 

a  <"   c  x  E 

3»< 

u  >   o 

I EC _ 
<2 — o 3 

c x _fc c u '-5 ?^   *-   t-   aj 
ü •-   O   »- 

5 8 S3 2. a I si 

s   - > 

Sog. 

E = sE>-g-c? *" — -^   - - o « o 
O   «I C   Ü   c3   v- 

3=P 

f- 

J: C eo 3 
3 X o      u 
•£«>■£ 
C    C     O 
>  o s 
Ul-O   o 

—  3 "3:  .-   -- 
a  D. g- b  3 £ ° « « e 

c°<2°"gg° 
.£?■£ S  g-S.255 
üco  O*O,äO-2 
1;      .t: o 3 m ^> o 

So 

E303        ~ 

0  u 
^ -c 

c -a 0) 

c R« 
CO "    c 
.0 u  0 
u 
3 

5 2 w 
h S    0> 

C 
4J    C O », 

t- 
1/1 Xi H 

ja x: 3 
(T 

^J 

< 
0 

c.2 •^ — -a C3 + 
*- "tn   O C c 
u O 
0 ca   0 

,<u 
*< 

■^ 
c   c ^r 

3 T3 II 
-yj — a. ^ 
g « H 

c 

IO 
c >• 

SI 

c °--s 
-a 

c 
>> 
Q 4>    t/1 

0 

0 —    3 

a u   U 
Ü .2 -a 

c a 73 

J E 
,0 «: a 
H.Ü v; 

fc- JD 

1 

o z < 
w 
z 

z 
3 

c  to u 

'.§>-! s 
ten-0 
O   S   u 
u ^ 00 
•£ S "3 

u 5 B 

■o >,<- 
•5; ■" o 
H w c 
tfl **-  o 

J--I 
Sä  " 
ü C 3 
CÜ  C3  "- 

S ^-, tti  . —    *3 
I« — 4J 
O Xl    4) 
|2a >    Crt    rr 

•{;    ü    Ü 

«"lit 
Sis 

E  M   ra 
00 «e w 

"Be  « 

c 

E 

. CO a> 

o   ""   V El) ^5 
>* <"   — 
°ll 
2 s ° 
00_,    4) 

coa  g. 

1? = ^    C    to 
7J  «        c 
c 3.JJ   O 
"-^ ^ -° '5 .2   u 2  g 
x — »1 a- 

> 
o 
c 
3 

W   O  "3 

oox:  5 

a- to S u >. E 
■-" S E 
0 ra >^ 

_a>  o ^-^ 
•§£ 2 

i>   >> c 0 
•-   = o-a 

w    fl    ° 
01 Cu on 

XI 
a 

55 
o 
c 
3 
a. 
a 
5" 

.EÖ «^ L) 

ess.! 
2 « 0 ■ w   >   £i   . 
>-."S 4j  ; 
<y  a jz 
t. 00 — 

-J: E 

1 

a. 
+ 

t- o 
^        S 

u 
cu 

en 
c 

3 ,< 

eo  O  5 
.2  S^ 
^!   =0 
5i   > r 0 

?  ■- .     S! 
.•fiöJ 
"«• .2 -S  * 

m
/ 

1 e
x 

d
si

 
tia

l 

1. r= c s -3 

-c  = ^ '— 
z e--5 Cl 
0 g>«ö 
i-s 0*5 5j 

S _g c a. ■=K 

0 0 — .2 8 
g  V—a 

II c3 '—'• ni  t- p •< ^  to 

|£°.E a. 
+ " =;  0 -0 

u r-  - 0 a. 

n 
in

fi
ni

t 
nd

 s
in

ce
 

su
bs

ti
tu

 
co

m
bi

n i~ 

03     C3    _    U 
so      .  U £ -t s: 
E 0 "° JC 
2 u >»" 
00  3 -D cC" 
2 ä _--c 
C   >   X   u -   C   u   > 

T
he

 
ei

ge
 

f. 
N

 
ca

n 

a 
1 
11 

01 

X 
a. 

T3 

cd **-' •a O 
c 

x: to % *lo 
C 

O. to O 
•H 

"rrt (J 

■• "" P „ x ei = S-t; 

E      - 
•^       ö Ä 3 
o j3 ■£ -E. 
=0   0   o.E?< 

■= I  ~ ° o 
2 - x>g - 
.H, m   c c 3 
I? u   c:   to I3 
- '£ c s c 
=3  1   S2  u 

sco I) 

+ &.S 

O f" os 

SE'O 
t»  o  co 
C3    to     C 

o      .   ~ tu 
•3 ?  E 

—   rt 
8 a. s£^ 

.2  ^- "5 
.0 — C — a 

O to u 
•3 C "C 

C3    >    tU 
= 0 E 
S^ E   3 

00 

Z   Si 

ij,-o  v 2 - 
01 u ^ •" 3 K.   .i  *< E o 
? •=£.!£ 

^— a>   a -3   c 

a T3   ^_ "t3    CS 
■^ c X a » 

„   —   u^   w 3 i^   to 
u " 2 "5 .y     Q.^ 3 

* .9 _ 0 2   • =V 4- -° 

2 f%8 Ei«5S 
ri g  X-o |>^--£  =3 

S. u   a U =   I".  -   £ -° 

tu U. ■£ w .2  c        u*- 

52 



f- 

CO 

co 
az 
o 

3 

LU 
o 

CO 

o 

m 
O 

o 
DC 

o o 
o 
z 
< 
>- 

CD < 

_    -   60T3   1>   O   <" 

r-    tu    R> «    .       M 

n_->-.o.o  >>o > x:  h 
- o -° ° .E E?S g .2 B 

ft)    I-   « U    3 ■£,   O _    3    3 

■x: —' = "^ ■- g o .a  eo'C 

B >-> 
Q 
en 

o > • - £ o 

O    3    E   «>    3 
E R- fe >> M 

O   tfl   — 

■— s o " 

C3   — 

0      t. 2 

>>n 2 = 
>> in 

O —   rt   

5i   O 
~ "3   —    ra • -    -^   S X! 
7. o 3 " > £• ° "3 
- ■= a.— s=»,j 
3    Ü    j. u-    O-X) x: x; 

p   _ *3   »-   O   1/3 .—   o TD  — 

g 4S g 5 * S -c .11-2 

.   £ ^>   ft)    3   fr'O'-fi   >    5 

g   o -   c  °» -   c  Ö   P >   g 
IS * , - 
.2 £3  >>-E 

£  6  <2  a 
o -5  x 

5 2 c u -3 o 
0-= .9 S •§ o 
E«S«£2 
•~ > c 3 o o 
§ te 5 5 E ■?. 

:-" « "O  c 
> c  u  o 

. ^=5  " 
" >> 3 &n 
& §> "-E 

.C   ft) .* 

-  S  a  a 
U   J)   to   — 
8 §•&§• 

.<2.gö   Si 
•£  o is  o 

■.      s -s 
0S8: 

-M   ° 
j <».   U    >. 
I?   °ü™ 
lo'si 
i>  a *—  <» 

.S ■«  w 
.3 « c3 3 
C3   ft) 1« 
„■o ae 
3 — o « 
o >> o o 
x: -a   1   — 
EDO C-g 
3 -O U    u 
O   « C- w 
C — O   3 

■o u o « 

■E-d o 
=    O   Ü 

.n o -r: c 
" c n" E 

§ a  Q.> 
C.Ö  a  § 

«        S -E  n  > 
•= P 2 j J2 

a if ~ 3 __ „, 

E ■<= S o 0 ^- ~ Ä 

.2 a »> a 
■2-= 

«J an1; 

eo rz   tn 
Ü   3   "J   o 
•s cr K TJ 

C3    _    U    > E c c o o. a c ■ 

c 
S2o 

— c -Q -^ 
u   _   O   - 

"5.9 S 3 
w   o   en -ß 
S  1  = •£ 
n "E ^ ^ 

0^3>^ 
•= -a u K 
O    (U UJ = 

E E >• 3 
i_   u ~ c 
a  o   1 : 
u  £ < < 
=  u > 

—    ~ u .E ., 

E 

>> 
•a 

'u 
a 
a 
c 

a 

Si a 
55 

c 1:       " 

=    E   O 
(^     Ü     "5 
C3     c/3     £1     C 

ss «&"■! 
J      O    w   2   - 

.  H 1 3g 
<      = Si 3 

>-' 
a 
z < 
CO 

(uo'rrfeeo.eu'3 
2"°£.2ESE5 

11 2 a < 5 •= s »I 
CO 

cOjO 
cr 

£„E|;. 
«    >    3   —  ^    „    „ 

"    "    CO 

J  J o  g  -, 

3 >**. 

u 1)   u O   H 

'-^ ü U    u   V 
S* ™ .£ £ "o'S 
H   >,s   O  -   O <W   i^L,    —     t)     '^ 

nun.   i- 

Z   3   5 -° 
2o  «^ E 

c ** .E 1 o 's s <£ 'i 
O*-    J2    Ccn    CL ü o-   «j 

11515= 
u 

_  SL.- Ä ~  « 
3   5? •» —   S   3 

c 
o «   ">   5   «   _ ^-3 fi S  S  «  „x-gsu 

&M 

5  2  ".g  c  c - >,=  u  t:  g  J> ^^ 

2      o13^! --Sr^c -„ 3 

3  SM 
3 .— *c 

c». t o » ■a <« s -5 o a -c E 

•S «3 u u eg "S u "•= 

II s 
"•§ & 

. i? 3 ~ 2 cr 
"^> u  c 
v.    CL — 

•Sog» 

2 §5 

>>=  o 
"3 2 - 
•3£^ 
0 en 

O.JJ"" 

^>a =- tn   w   «> 
01 3-.-S 
en ^   w 

'"  s  n 

31 f 
cr E E 

0 2? 
£c.S 
o 'S o 

«2S 
o   c   u 
—■   ft}   w 

a. 
3. 

r?s 
0» a. 3 II 
•< -< 0. < 

>-. n. 
X u 

E E 60 c + 
a. 

VI * K. 
0 < 

ft)     O     Ü5     Ü 
>    3 — -O 

. S « .2 c 
O  w  > i;  R 
„     O    t-    H    CJ 
II  o. « £   «- 

°.2   3.=   S 
So    »  =  o 

3 o  i> S 5 

•E K  a 5  ° 

« CM ■£  5 •£ 

cn   pa    c    ft —-i 
<u        c x: ^ * -*= o « - 5 

■i-..Ss; 

^ S  "2  « >< ~    3 —    c 

?> 60 _ 

^^£ 
g.3   o 

-P 
B3 

4> -— C"l 
E E ==• 
03? 

B E 9 - 

5 xi £•:=  Es-253  E 

"e 2. >• a 

01      S*" 

3 SI   *< 
CO •=  ^ 

01 

.3 „       .c 
u o       — 
g   3 60 

a -a a 
>>E 
co c 
o xi o 

*^2    *- t/1 

0 H 
w Hi 

£> 
cu cn 

U  j-    ü    C3     ^ 

■£**■£ c -^ 
o **-*    . ü 

O    3rf    o 
^ v- -g * 01 „ 
-  § 3  S  v.  a 
S„2 E-3.2 V, 
£ OS    C    " 

•*  ^3    C  Q      tn    C 
■ohc^ o a. 
3 m v- x; x 
ca       T3   o   o   u 

O   o 

•0 
c •X! 
3 x> 
O 

X) (A 

60 

TJ 
O 

U, 3 
ft) Ü 
x: *-^ 
H T3 

X 

■H        II 

c 
o 
ex 

•E 
3 
o 

«J -  ep 
+   «    C3 

^    3    ^ 
* x: ?> 

O    cn    OT 

•OB'S 

«*«   © 

■<  o  3 

'  .E  o£ 

•^     ft)   — -3 

X    — X   ft) 
c ■•5 > "g 

C   ft) XI 
OO)   01 

265 

||| 

sis 
w a. 2 

•3 o. E 
•5   C3   4) 

$8 E 
a  °   » 
U   d)    cm 

vo      Ox: 

u  2 >  •- 
3 X> 
Ü    ft) 

ft)   c- 
■a E 
.Ü  o 
■«  >. 

gs 
o « 

I 

~3 

E 
VI 

Ü3 

•e 
T3 :e e 

1-3 

CJ 

**r   tn 

D   a   o 

xi   3   a       g, 
E -2   3      y 
3—6O       *< 
3=5    3 
-m      G      t/1 

o8S •"*      *\      Ö 

53 



CO 
er o 

O. 

z < 

HI 
o 

CO 

g 

CD 

o <r 
H. 

O 
_i 
o 
EC 

o 
Ü 
a 
< 

m 
< 

•2 S=T-3 ' ~* .a S     « : 

%£>£ a c •" -S -a 
»   I)   ä  fi 
e 2   °   S* o a J e 
sal s 

«.2 £-2 
2 "o J ä = •5  «   „ S   a 

o  u   u  S   «> 
£6   3   S    S 

Hill 
sijll 
2 a - § © 

o.a 

£•'3 -o 2 
—'    C     tU 
~   C —   co 
X>   U'"3   3 

o  .:   S  o 

Cue cd co 

s-S si 
co   c Ä «- 

a   w K £ 

00 a x g 
u  eo — Si 
Z. £ ■£ ° O   C ~ tu 
o-.2 £ -S 

~   U    U T> .2 

§ S   « § 5 C  co   °- 
§   U X ~ 5 
c X   3 73 

c .S S "j 2. 
§       <o 1-4 E iii.ri 
o o   a « v- ■ 

M u « o •= 
C   2    E   60 c 
* •§-.- s -s 
O   en   N -3 — 

5  »Ö52 
o — o u s; 

S <~  u -3 3 

S-= J 2 cr 

"i o  u H 2 
!«*-  *■* £2     .   co 
'   O     -w    a   K.1     CU 

e «csN a 

'■§£ 

■a " - ° a 
_ a    . 2 tu 
«  3 o -2 X 
—    CO 3   — 

.5    3    „ 

•a 2---1 u — "J _ i 

.a o j= 5« 

ra  u 

. .Ü <u x 

I*f I" >    0)    cfl 

.2 S £ -S — a ■*- — j3 
— EX tu  co  u 

•5-0   S ^. "fi 

-     B) U   ,U 
o •- a "" • 
x: — Q. <u 
*-   c ^   o • 

o.?5 
1/3   "^ 

O   ö   t- 

c o .y 

o a> 

-—    CO 3 
O. 3 S g a a 

j.2 8. 
O «u 
c > 

3   U  -3 
U >  s 
13 - a 
C    g    s a aü 
u  u   c •=" s 
"° 2 2 
—   co   O 

>  ü   Ü 

3 .C    = 
O   —   ** 

SiJ ='^> 
^ 2 2 a. 
.2 ^  T3   C3 

•3 .a .s 

c - c 
ra •£ u 
u o ^ 

H   en   o 

■= J= N a a 
CO J2 

a * 
-s« 
c.S 

2 g 
«  o 

c 

— — 2 

J.-S 2 

•s o a 

■o u a 
'e 

.«  Ä   b   c 
u^ u Sc2 
J^.a •• a 1? 
2  u - 
n -C   •> •= >-s 
^ ^—\ C3 

c **■£ 
o ä a 

S II z 

•OH  H 

C    E    S C-    t>    C3 

4J to   *- 

•^ w   O 

C t-   C 
C C3   O 
K> v . = 

ac § 
•£ o <S 
«1   c   u a    o 
««§ 
C c«   ^ 

„   " o c 
S   2 „ u 
S   "S3 
jy        *j     CO   • — 

£       1.    c    C 

H     O  c  ej 
■jp .2 ,u 

•   ^ i'S 
O       ==3 

, o 1 o o 
> 'S 
x; >> 
o S 

15 
V>     at 

CO U 
0>     M 

A 03 
1— 
V   u 
C XI 
w _• 
00 ^ 

*™^     * 
H ^j, 

11 u 

II j 

.211 

IH 

|s U T3 

a = 
" o 
c c 
a-" 

4)  Ol 

o 
c 

>>   . 
o 
co    to 

C 
.H^ 8 

•^  ~-o 

8'^ § O, J3 ^ 

a. .a s? 
CO   J   u 

1^ 
«3 crp 

Ö   u   « 
D. "   > 

tu "C 
>»J=    u 
= -* -a « a ^ 
^ is 

a u 

o S 

o S 
VI g 

.-^ ^ *o 00 

•g § 5 •- 

°; 
A  3 

— = o 

u o 

S .2 
>»  C3 

03 < 
1 > -       SO 
—. C>   C ..to 

I 

o 

.2 -a <= 

.a S 
3-s 
E. a 

E-= ?^ a» 
cgx. 

!? 
.2Ä 

"I 2 
o^ 
0    U    CO 
^^ o3    CtJ 
C     "    ^N c a a — 

§1« 1 

*<        tu 

•S      >( o 

N 
w 
H 
> 

o" 
II 

^«   I 
•o I 

CO £ 

o -s 

c  1- up £ 
>» 2 s  a "5 > "*-  <= 
.ti   co   CO ^ c». c^ 

J5 

E " §.i 
_ <"ü 5 ™ -o 'S >» 0 „ 
2 !« a - 2> a o73 s o 

0      ■= c c o i» c 
o   U —i    -- 

ca — — 
> 5 o c 2 -o 
tu JS 3 

—   c **! 

>» >= t_ 
a 
7T. «J 

< 
CO c _, 

c 
V 03 

2 <*- 
>. 0 

E 
0 

.'S SZ en 
_J 

cd   C 
CO 

CO 

M  u 0 
"75   cJ f= 
X=3 0 

0 

x: ,M 3 

50 0 
c c x: 
:s a. 

3 
*io 

ü T3 O 

CO 
*o ju 

O   <° 

3 
XI 

0 ^ 
O 

ll ■c tT 

F U 
K J= 

*-. cÜ 

IV 
•O 
c 

J= O + 0 

# O 

E 
«1 

H 
II 

ca 

^—* a 
3 

X H 
O 

II .—. 
0. 

O 
T3 

C 

CO 
C 

■H 
O CL 

X 

3 
CO 

C 

E 5 

o 
+ 

ctt 
3 
CT 
CU      M 

C       ^ 

J '5   ü 
%   •£     O 
H   3      , 

>   Cd 

x c 
11 a 

cd T3 

T3   X 
a •£ 
2 a 
— E 

Ed"»-n'=e„S&«"«, 
_o  0 

-  ..  °° a £.5-5 O  a  §  «2  » 
^«    r\   ^^   *-*   n 

p " 

u .s  e  ca  u 

•O 
ooTa tu c tu -a 

.— N 3 
g-"C — 
c o .t 

C 
o 

-C    .s 

o + 

+ 

3 

.S2 
CO     C 

<U   o 

•°-5c~Ced-g.2 
SctSSE-l' to •— .—.   N   5    - -J3 .< 

ns-sS^fu-aoe-sTjo-f; 
C   co •= .2? td   g.c^   § E   N    Cd    3 

S.2c"«"oCS"!   60—    co 
£■■5 > E.^a« E c oi u t3 
w    t>J   O — « *—    C   o '?3 — *^    ** 

„       Ssagl~-S.s5.So« 
^Z   „>>S'8.S e  a  "  »  o  0 „ g a  >,S 

.Ü CO 

O >^ ö 

£- « x: 
p o —   4> 

co O c 
C3 ^ "3    tU 

.2 E •; 

> 'a 

cr 

3 8 

co Ä 
CU   — 

C   P u «3 •o  „ 

a s 
■S'g 

> 
-a ü 

E B c        I—t 

■ g-s"2 

1) >■ 

- T3 s 
a 

0 •— 
5-> 

0. 

;►. 
Ä 0 i-l 

g"! E 

o£ 
t. 
0 
CU 
XI 

H 

S'5 o &o Ä-g.2i = 
°?»MhS g CS o 

lJJ-'ü„S.co4;E=Ccd'cjt!.2«>_ C—   c= .2 .ä   cd   W   3   S "? T3   «u   S- 5 Xi -o 

§ - sis 08 §.»-E s ; 
" *" -2 13 a i ■? ■ 

cr ra o 
UJ  2 x 

E 
s td-s > 

0  o ■ 

[2 X    «    3 

a 5 si E u 2?-o 3 •** „ o _ ■= „ 
s-iM5«ir 

>^^ M)   3 
3   O'C^J S tS .a c •£ 

- s 0 s.:2 -- 2 § S* a S .2.2 s e a 
£l-3S*-H^J2ü5lc£goK-S 
~.Ssn a Er«« üo.;o = |a«2 

^   rt   ca 

CO 

c 
T3 
C 
O 

5 

0 
c 

O fl) 
CO 

CL 
CO — *" x: 

•=>    °    CO 
v.   co -p 

•= G x: cr £ s « 

CQ C    03 SrS-a^liES-cftd.SS a     0 

T3 
c C 

> 3 >^ 
CJ 

-O 
71 rt cr 

0 
OJ » CO 

X) 
C PS 3 

F «S CL 
T3 

x: 1- 

> u- .<— 
O co 

Q) 
C 
O 

C 
Bfl .^ O 

Ü z CO 

Cfl C 

Ü Ü 

•S £= c 03 
e X> 

O 

X 
&: 
0 
O 
0 

CO 
0 
CL 

0 

en 

"co 

CL 
03 

"03 

XJ 03 0) > 
cd 
X "03 

u* 
bo 

£ > "■a 
4) C 

CO lC 

54 



P3 hy
- 

le
ra

 
on

s. 

c 
o 

*to 
c 
u 
£ 

c 
p 

co 
X   to   « 

3 
E 

er o c - " 
tu 

« S2 .2 '■5 

u 
tu 

.2 
00 

3 U) U    V u 

Q. « *£ 
X "c 

H £ «,-£ "3 u > < a c -o tu 
c u 

o 
2 ao 
tu «sa 

00 c 
ü < •- 3. c 

£ 00 o 
cc tu           b a> ea 

CO 

o 
E5°. 
we« 

3 
U 

u 3 
er 
cu 

tr 
ca  u   u C 

03 
"35 
c eu 

x: 
O 
m 

1"° § --«'s ' 

S o u t- 
O 
er. o ■a 2 
LL St2 n u .1-1 

O • 
2 

tu 
3 

T3 

„J •O   O. to •o *SÖ 
o •2 g-g 

ca  ta •£; 

"DA s *c 
tr 

o 

5 
OS 
c 

ja 
00 
c 

*5i 

ü _   C   X 
to :s •— < CO 

ea 
ea 

i— Tu   co u Q 2 o « 
.2 t~ >* 
3 O X 

cu O 

< 
es 
a 

cu 

> O. to T3 J ea 

c 
~t/J 

1- öS« 
rt   in .-2 «j 

0) 2 c3 

B 

CO 
K   O   c 

■Sog 

E 
es 
X 

Cd 

tu 

ü 

E 

C3 

E 
U 
Cd 
U 
C 

o X> 

r1? 
00 "c 

o C 
ea 

«  o       — 

I   I   I 

= 2- 
op-S -a 
§*g 

3 

+ 

+ 
I 

+ 

+ 
-    »M    .ix 

S.  3 
II    II 

•3 -3 -3 

3 3 

+ + 
§• 3 
n rt 

+ + 
3 3 

IN II 

+ + 
f» — 

3 S 
+ + 

2 ö 
c u 
V  o. 
C   t« 

aß 
Er- 
o \. 
o S 
to o 

"3   u 

c u 

ta *x: 

73 rn P- 
's? 

6  a> 

o o 
in O. 

C a> 

g «' s = E g- 
_ o 

22 * 
9 w„- 

*5 • °J 3 er1- gw g> 

2-S-- 
o   c   >, 
-    j>    [O 
« .<u  «> 

J= Sa c 

tn ^ u 
'*- *tn   <o 

:2 

'S   +    Mi   £ 
J   i/i   &•  t-   rt 
:  <u C>  CLjz 
I T3     o   i«   — 

u   —    Sr 

> 
-.    —    3 

0    o    «    to , 

?E>> 
? g-s; 

«to 
CJ   «    r- 

+ 

.9 ■=  c ö 

öS 
.E c t; ° o. u 
u "3 
£ E 

._   ^  2 
ea «J — 
« T >. 
J-   c X) 
J8-a — 

C3« r>J ,. 

0i ö 

ea ,1) 
'-N   3 

T3   CX 

ta  t 

3 -,    . - x 
xC ea 

e>  o 

3  > ■ 

= ° s 
*-    O   x   — 
•- J=   o  g 
oCS-2 

2 s"^a 
- ff-l > 
g - ^ o 
i-s + 1 
8 8T& 

o .S3 "a"« 

S g ii | 
1 u .y N = 

^  c   N  > 
2 > .S 

•©.|<M   c 

3      2g 

+ 
3 

+ 
"3 

+ 

-*    *-   T3    ;; 

§:2| 
—   c   "  c 

S  iä  £?•« 
v   ea   u   4> 
«J   to  —   to ■ 
w ™   ea   >> 

'EÄg» 
ti:-^   o - 

3 5"^ 

ea <x .2* 
s; O o 

§  "  S o   3   ea 

n  a) -a 
—   C   ß 
x    IC ^, 
O uvi 
„ "O <N 
ea   u * 

■£  >  er 

•i 

srt  1 

ca." tu   „.   £ 
S---2 
?o^.2 

cn   " 5 

— — u 

X XI ea 
C   J= ■"    eo    "   — 

ea   o ü   ö   ü 

ea   ea   . 

■o-S" u .0  : 
3 T=1 

:   ea 

: u  a. -" <— 
!  c   t-   c S 
> 'C   a   fa u 
•   D.-3   o j= 

~ 0 i? to a.,2 

\     Jc-5 1   BO'S   " 
>.E tog 
■■ t ü> 
1    V   3    _J 
.    to   to   C 

«>   ea -rv 
> b  «> .2? 1 acc 
r c 

c o 
> - ._ u 

T3   O 'S 
j    U    «1   H 
*   to  2   ea ai  ea " o  u 
|Ü2 

•i 1 i C   N-g 

ü 2~ 

«j o S —^ 
E-=Q £f 
o " . .E 
E S.O 3 
— c II 2 

c^>3 *- 
ej  to   II  x; 
to    o i^ 3 .2 Ö- 
O   > u 
!_ o 2 
TJ    to ^ 
3 — 3 — t3    u, 
—*—   (U  —: 

ö     ^> 

*g?' 

S^ ea -S 
o-- g. 
S  «  u . 

"i   u 

S  v  5. 
.2 E-S 
.'S   *-   ü 
"O *S Ä -a o *- 

£ *° c o -. 
es -z: ^* 

o  c 
c  o 

: (3 eg »g$ . 

c ._ 2    3 O to 
: o ** o 
l o j4 -a 
' tx 0 eo 

20 Sä •£= 

•=   O0J=    o 

»552 1> X4 3 w ea ea 
U   <L>   > 
•°  Ö-a 
•x    O    c 
O T3   ea 

es- 

+ 

+ 
tN — 

e> 
+ 

>> + 

82 
g'i 
II 
aj   to 
(U — 
to   c 

C  00 

S'" 
tu  S 

1§ 
e>        —   3 o cc 
-" °   ™ 

-Wi 

u   O 
XI    ;o 

<= 2 

— 3 

O s 

a 
z 
< 
CO 

•E j_h: to  -t- -o 

+ Ü 
es 

ea        x. 

+ *-a 
c 

ec: 
KM  
I    X   H 
II    II ■ o 

« § 

E 

'^    C    C    ti 
-   ea   o 

c   c 

i-* 

H ° ra .- 

«  5 a §■ 

> c S 
3  2<c - 

^   ea   u   C 

sSi-f 
•o S o ._ 

E._    HS 

ea   c   u  to 
„        ^    to   >  -o 
»    £   U   So 
E.   " x; xi    - 

ea   5  0  «<x g   -S _JJ  ?  o 
a    S   u x:  c O    to -g   o 

u ~o x: s 
t-i 

+ 

II        2r 
ea   to O 
c   c -— 

= « >>2 <-'■ S -£ -o  c   X 
■5   E    tu   O    fc 

- J<: u N ji 
~ — x „ ea 
u —   _  u   > 

.= y B ■» o ■ 
£    U    ^   U    h 

'S * - « 8 

>  u H -   n . 
._ S >. 2   ^ 
S IIT5 2 
- ä"-S d <2 o — ra E c =   to   y   ig 
=^^9 o o _! 

3 1 £ 2- 
E 9   85 

N 

o u ^ r — 

o c 
co   tu 8 V! "3 

, _  3  tu co o 
• T» ^   tu w 

5  u  c T; u 

00 S  c .—   t« 
wn 

1 
II 

f § x)     cj 
ea -1 _tj x 

0 ?-; cu c 
3 

■:r> 

to 
cu   co 
0 ;; 

E 

■0 >^ eo'i) 
-E   r SS a> 

•^ ;J DU ö .y 
tu  «2 
0 ■£ 

s 
to 

N 

> 

^0 

+ 

I 

^1 »**    I T3 I 

§2 eu '* > . ■— eu 
ea "u 
ooco _> 
c J  ea 
co   —   to 

j; ° _= 
•—   to   ea 
o   S-- 
•i.-22 

^5 a. u - 

-a  o t 
.=   O lo 
X   tu ea 
ZS£ 
x t_ ca 
~  o x 
•a _ _o 
g  ta co 

lOeE 

N H ■- S 
= -  E 5 0  «.  "" U    x- r- 
to -o    CO x. 
U    3    >-. ." X —    co -J 

.23   H   eo S 

M* ? 
ü    "   U C3 

2 .5 - g 
'S •g'-g = 
•O   OtS o 
•O    ü   w ^ 
c JE   *-* > 0 - S o 
K   «   « __l 05            u, 3 

•£ a> C 
ü x 0 
o  tu  S 
C      .   u 

öö N £ 

£<E 
~   »;  2 
0 E &, 

^S >.^ 
— w u 

X   u. -5 

_> e c 

f.l£ 
eo1^  > 

£?"§ § -= =a § 
t; to tu 
«   E   co 
5 _"- 

•2 Sät 
'S c-a o .5  a> 
— *c  o 
ü  o JJ 
C    =    (U 

C3 

H *r  »-   >  «- .0 U   -—    tu 
N    'S    >    o 

y ¥ 2 71 

S-2   ^  g   H  e i 

X    =   _> 

c   — 
5 ,=   ^ 

eu   ta — 
= -  Sa 

a. o 
eu   u 
•°   eu 
^-s X 

Ä ** 

8 i = 'J 

— £ « 

eu  ü 
•::  co 

o >^ 
o  00 . 

- "3   tn« sie' 
X   s —   tu 
- o   >,* 

5 

%• tu   c 

So ° 
3 d - 
7; pfi 

Ö   co    i--= 
c  S2 
SS.s 

o. g c 
tu   ea x- 
5 E > 
.  1-   o 

tu ,0  c 

X    >    c3 

O .ü 

11 
18; 

? 5. 

!_TH -S 5-V 

«   °  5  5 t—     ^-   C3    C3 

=  = E o S    ea to 
5-o-E I 

So    . c 
§•5000 

o E o 
c  tu .ü -H — x — x 
c  t: xi 2 o   =  ta to 
" ° "x> 
c -° T5 -e ■ —  .—.   ea   o 

s-i-g» 
§  2  E  o 
icISf 
_r s ._ I 

.i>S' 

3i_ S^f s 2     2i?S 

*tö ._ 
Ja -a • 

co 

O *> 
i: o 

8 3. 
ta • 

1^ 
5   eo 
D. S ■ 
ea   co 

tu   P ' 
ä B 

■o s; ■ 
a co 

iE* 

to    a.J 

^T3-_ 

1-     ■     iw 
ta E c cu u •= 
co     P 
5  5 «5 
«._  o 

c -o " ., ° :   es   eu  — 
«££   >. 
;   tu   eu   O '   tu   tu   0 

—  ea x; 

!-§ = •   co   > xi 
!    >. x" B 
>  —    C    co 

.E « 
2| 

E «' 

S2 

a   u   r x "a £ 
'5 

tu  c 
.—   ea 
c  o 

cc   co 
.E E 

ea "C 

8 .HP 
"C   ea 
2 00 
tu  c 

ll 
ea  5 
o. S 

xO   g 
fU   o. 

•^ ea 

CU 

: 2 > 1   00 eu 
£   eu x 0 tu 
o -a o x x 
E    tu X — 4) 
„ X. J •- 00 

g '-5 
x   " . t-    _tw 

_ 3 2 
' ,0   co   co 

:  co ^ o 
: E „•■£ ' ü  eo u 
!x Sä E 1 s- ^ 

0. >> 00 

•5 tu 
•a.E 
s§ 

■x § eu ■- 
ea — 

8 1 
,0 

ea   "•_? !_".=   co .i; 
CO  4J 

o  2 
<C    cä 
"ö  " • tu  E a.— 
to    C 

O  

x   „   00 

~  c    o 

00 
.E    co 

= 1 
X 0 
ca *s 
co C 
ea o 

°3 
ju   ca 

"2 
tU   t« tu -a 
£  P 
1 - 
£ E 

o o 

5 I 

co    ^ 
« -P ea  oo 

8 g 
EU 
ä< 0 s 
O   *" 
"^   tu 

öS      . 
"w     > CO 
ea * -a ■ 
tu   eu O 
_- S X 

•o 3 
S 2 
o  M 

'   M\   ca 1   eu  x 
XX. 
_   P 

'   eu   tu 

E E 2' 
tu E 

55 



CO >-. 
CO XI 
CO T3 

V 

co •c a: 
O > 
i- o 
"i c rj a. u 

111 

i 
CO 

g 

m 
O 
EC 
U. 

O 
_l        « 

o 
DC 

Z 
o 
Ü 
Q 
Z < 

CO 

CO 

to   C 
o o 
3 'S 

«   2 

2 "3 
K   O 
•a a> e  M 

:3 
3 
+ 

• 3 

I 
II 

CO    O 

s « 
•£ ■*"• 

So 
3   C 

a.2 
- « 
«i "-3 
ai  c 
-w *-■ 

safe 

cct   O 

•3 
3" 

■AT 

I 
II 

co  o 

■iSJ 
«8-S 
>>J=<E1 

"5 ~- o 

■SI* 

3^ § 
C   ^   **"^ 

O .2 ^ 
4>   e«   T 

=* 5f O- 
N o.+ 
o .2  cr 
n"Ö   + .2 o 
o  P ^J 

£-2-   ' 

.2: S -3 
.  ?s8 

■c> 
o  •-  *2 

■° o e <o '-'  o 
So g 
-o fa- 
's E 
c  " o 

N 
ID 
H 
> 

t> o c 

_. o o 
C CO   > 

'■s g « 
O o   C — 

-cop — us 

N — o 

§12 

•.£■ ä  o 
.§ « S ~ -jj x: 
*— O    C   ,-■■»   — 

S e «  0.3H 
a o "5 .2 W = x: s. x; *- w 
00 — -S "3 o * 
•£ g >.5 = » 
S -s S > ' 

c 
o 
c 
o 
x: 
t*_ 
o 

SJ.S2 2 
0 -5S 

ß-si-s-stfli-s   I 

+ 

+ 

-5* 

I 

o 
._ •-; c 
3 3 .2 
3.  z « 

U —'  rt 

SI"     Si 

_ccü0gö«5o 
.ago'ssSasc   p 

„.-*cote-SD.««>--3      £j 
> c x; -o -o a 5t> o => •-   .   • 
">°M-2>S-=.MUCSW 

■S-S-S'S!--o   LgocO U   Ü   rt   C *r-.   ^. *   «i   rt> 
C-l   C3 

o   3 T3   as 
"S   «   O   M 

2 *" E-S 
c c 2 o 

*"! .2 .5 "Eb 

■OT3 2,5 

lill 
o o « >. 

a»» 

i N ■gS a? 
=  a ^ 2  a ^ Ö  >. 
O   so    ^^ ,t£ **-   *- 

•i -2 1-6- S .S 8 o "5 o 

>■   ^   c   ä     »  d   H -r;   c   ^* Ti 
v * i?-c 8 2 H o o S « 

c  a  >? > — — 

,<ei 
u > .2 
£3« 

s a S 8 5 "S 

'-' F\ *» 

o a c — n 
O   O   o «n c 

2; *^t to ^2 
C   u ' 

.S -5 — .S 
7-   O   U   § 

Ü   ?P"   en   H   00"Ü   3   O'C   "js 

•=„■3 .2:      5axOoo 

'otsll 
ggä-S1 

Em  *^   f- 
3 S; o S 

« u t: u 
<u -S = -c 

*.s-Ss 

§=Sc 
2 -2 cO 
E2g 
U  u   ej  « 

>» O   00 £ 
" 2 o 5 
B- c *" -e 
2 a c = o ^ o 3 
'S M^-O 
c/i    - c -a 
^   «   O   c 
"3 1. u o 
u.  3  e   S" 8 8 S S 
c «*- o t: 

M  —   1)   E   S   o 
u« » o 2~ 
« S to* "C •- « 
.5 00 3 o. g 2 
c   o  5   C  U  "• o ° > o o j- 
c c c _ c 2 
o .2 '3 S S S J3 rs 00 S •£ 2 
♦"    g    w,    M    3    o •3 I   « -°  to   « 

o o I g-S § 
E « 0-3«« c 
" Z -S -2 _ o «> o ,r  . g o 
-° •= - c -s E 

a 2"= 
-" -5 M -S E 

öS" oo-s; a 
X,£ E 'S o ^ 
S S « -s 

g •; S -S « -S SJ ä. .2 
* S--S<|s*s| g. •S 5     _ 

O 1 

0S.5 
•S T3 -O 

?'S    Ö.-T-T3—   —    U    O 
— —    ■"    O <Mo."5  C~   H    o  .> 

>^0   «J  — r<— C   O   C   >,u 

•a "5 2 oo^ >>P 
c 2 6 

ES52-gg§°S2 
- -    O    3   00i2 ^^ 

§ £ 

■o -z: 
o  u  a — .a — M   o   U   d 

CJ    to "O   ti -a .. 

to    «    o « «J 
S »S""- ü to" 

•r„-- c o to t: > eu •^-„— c O to E 

§so 8 ö e, 
«op «».2 ^; 
3 °" S u 3 - 

§.:! gag 
co .2   to t*_   o   to 

_ O 
^   c  ea *J "3 *- 

o :t: ~ eo't5 "o S S .5 
-. -"■      .2 E? oV-5 •£ .E 5 
oc«-— c.Escf3 

PC*2*-"«      ■ 
•o  O  l)  "ä   o  Mo 
-1- c *s c  c M *s c 
o .5 o o o >>3 o £ ö 

„ ^   > -Ö   3   O -S   S-"""   - 

2 5 
. o -s 
■ -o to 

£ I)- 
J2  8, 2 

o .ti c o. o 5 ■c    - o .2 -o c o K _.  — 
> na 3 o ■£ Sr — P 

ai ^ 2! ■-   « 4)    r 

•a >>2 -o ■O  piv- 
•E u 

C3    3 

O o 

et) 

S 
^ - - _. — o 

c o">'5b— S Lo Sh^ 
1  o •—  o •—  ctj  ^ ö 

1 Ma S u  Ir. u'S ii " 

: £ o _g «3   c ^ -5 _H «  8 

!«ici-lo§8|g»§- 

P S >» 
to JS 

*to c-1 

c 
cj_ 

c 
0 

CM 00 > JZ — 
0 _r — •&■ co 0 3 

0   . 

0 ra  A  P i: 
0 z^.- a 2 

= *c£ 
0 "3.   «  ^ «      ° -5 
—   P "J J3 
„- p   . « 
Cw-C   >» to 

u —   0 

•- tt-l 
0   ' 
Ä   to 

si Ä  u 
Q. O 

CN 

II 

p 

c 
.2 
3 

13-     O 

+     + 
CNtM t^tN 

0-   cr 

CN---1 

+ 
cr 

E-° 
0 0 

0 S 

— to 
XI 
3 

+ + + 0   0=   u 

ft! ■§ * to 0 G- CJ- 

•S'£S.s 
c .t; «  n 
« r3 2 c 

2 *—. -0 
0 

+ + + 

^ *-    tD 
"c -« l    « O     Ut 
•a JD 

1* 

c? C t? cr 4J °» E g 
„   <"   >^ — 
0 i) ;" 
C   >          v- 
. S 0 0 

Sf «    - 

a 
z < 
CO 

+ 
not 

+ 

"5 

p 

£ 
C3 J5 

to 

etj 

to 
O 

0 

+ 
f 

0 

+ 
O 

+ 
3 z 

z 
-3 

0 
to   cu 

0 -s 

ooS 

+ 
C 

.2 
0 

g 
1 

3 

1 

3 

1-% 

1 
3 •"" 3 M 

^? ? JZ   to 

-3 

c 0 

"5    = + 
0 
to 
C 

_P 

P 
§ 
3 

+ ci-s 
f,f, «32 
5, c""o  Q- 

00-3 

.2 *" 

3" 3   CT 
crW 

1 1 1 -«-2 S E 
.  3 0 >, 

4-   0   O   to 

.2 1 
0 

0. 
0 

_p 

p 

c II II II 3-H-S 0 
to 

-0 g> "3 
•3 

II 
r-. •3 -S ■S 

«-S i-S 
•a 'E •! -S 

.g 
3 

I'l c 
p 

3 •a 
0 
to 

CN *c •-C <• Q. 

si u 
0 

2 cr 

0 

s    -; CO 
CO 

S. 0 2 Si 
cd  *- 
3 t" 
00 P 

to 
0 > 
'M 

0 

H 

*—• 
0 8"8-8 

■2 > « g 
M'SU   > 

JL ^tl   *"  b   II   c *a   A 

•^=3   O  S ^-,-s  «   E 

Eg  g.«  :Sg3 
g "  8 o 3 -o       E 

E"7*"S      .  C    'I  t^   W 

o a a .E * >,.? „ .2 
Ö S-P <o s-B - g « 
•S o " c »».S-g g. 
*£ 8 o5» ;3« 

"> £    60 3 J=   °   to   Q--5 
o s c -c r a s g 

tN 

.2 — , f-o
:5-2'2|g-2-S 

öS 8 -3 -g * -3 "8 Ä« 
r""  aS"uiäPP-2 

^ S -S °-° "5 00 £ 
o-uocE-.Eo- 

>-5eou"3.E8-S 
11 s -3 c ••= a a^ 
= 0 •-a P o-.-E c 
« 5 •i1- EiücS .Hpt3<-t-   cnPC 

» g . . 3 ,-. c "-'S 
'" - o tr co 5 11 'S 
>> S II W o . > » „ 

■3 P II •— 0.O to ■—; O 

Ct^'^C   P/-*H   •"».— 
« ■- Ä P 2      «   - öö 
.2 a-üs-ioM §"^ 
HI -S <- P o 8 3 .5 

+     S 
cr 
+ 

o3u~3P§:3 
o,     -00   « g  Q- e 

cr c  u.   u a j-, 
n    .   3   O    o 

•3   « P ■; t! O 

-"   "5     o 

' Cr c   u.   5   c3 2i ' 
3    O   X)        3   5i 

o-^8|| vctEj 

si .5  S "> -= -S o c 
' 'C 
, P 
- o 

-.2? "   c   3 -a   t.   t^, 

~-°„8uo—  P 

c       u - Ä-T  o  « s      2 
"      - S-a 8 I äsli' ca 

^  5   « 
^ o -S o •£  o. to   ca  2 

->   to   *ji —• 

~ J3   K  -O -T; •- 
C    o 

«■g o 2 

■35;" 
™ « '5 

^•5Ö2   o   E  " =3  c 
"   r^ s   w   to   (-»-3   r»   *-• 

C* tj 
O 

ö 0 ^ T3 ö -3 

T 
11 
o 

-•C >  00,=  "22 « 
.S-*o   ?r3£og-3 
60—      -1-«XH-I"CXI 

I   a    C^oTKtoO   tau    O 

-pö-oo-l'^o'5^ 

% >, to o o o   >, -3  \ o  o 

1 ^    2    So"   "   P   HL-S    S- E »-g j3 cro ,3. „ -H.-  o„ 

S "g S °  II o" I .§• E « jS 
) -2   •* SL        -u    c     - o  tS "3 

:>..E5 a^clfc,- <g 

- 3    £ ^tS'-^ '3. o »• a 

0. 
J= >. 

Q. 

g 0) « JZ 
6) .ti 
* G 

Mi 

;-=5 
tu 

CO IM 

0 

C/l ^ 
3 
O N 
cn 
0 4J 

>% ^j 

P3 

cs 
X 

CJ 

t°   .3 
Efc 

c  S e E 
co    O 
"*     4> 

to   *-* 

c>- 
CO 
to    U 

x: co 
H   o 

56 



co 
tr. 

§ 
a. 

o 

CO 

o 
<5 
m 
o 
tr 
u. 
o 
_i o a: 
I- z 
o o 
a z < 
>• \- 

00 g 

a u 

a.9 
d e 

££ 
— «J 

X .2 

!l 
.2--Ö 
-< o 
■g t; 

§ 8 
'8 S 

£•.2 "8 s 
S| 2 o o .E o •= 
U   co   >   cd 
5 e u 2. 

■o 3J2 E 
>   . *a w 
o + 2 ^ 

t> < u o 
x> 

A   43   O 
£■£"£ 
.2? >- u 
§£| 
v)     •   3 
"   U   (fl   en 
c   °   « "O •-   3   «   C 

^"8 .a«3 

3   "   -    «> 

ET— - 4>   CO    «J 
Ü    C V 

B £ 
*» 5i .55      . jr; eg   ,. Ti 

to ~ ~ i3 3.SJ g «3.5: 
sc « oo 2 o 
C -~   CJ «-2   4) _i w - - .2 -a 

<s _ 
co o a a.a ea ^ 

+ 
to 

Ü   3 

"   g 
-"2 3 
x-g-g 5 I 2 

j=" " ^ 

IS" 
c       — 

— 9 S.9 E 

'2 »5 B j&g.S g 
o?^||l |'| 
^       3 o o    - o ~ P, ' <n **-   —   to   ,_   jo   y 

c .9 g u "" o 

"^ c oo-= 2 !2 c Ö S3 
JÜ o f = 3 « 2 3 « 
»a ü P .a «s g> « g 

•&■ 

•e> 
— in 

-o- 

eo    ■    3   l> 
- g n£ 
a ■- P 

t; 3 t*H <^ 
3 —   w ^^ 

"■§ s .j?* 

•a -a g g g 

S3 •£ J>  S  a 
2 »■££ g. 
g£-5" 

o 

II i) 

00 
■S.S«- 

° S g 'i -8 
H   a   an 

.iL       Si 

■3        5 

u 

•O" ö 2^" e« 

2 cr 5 ' 5 w. - 

"Sis- to -O 

IM     V 
=    CO  i CSD 

u 

— lr~) 

II 

* SS §SfiJg E 
m 
ii a S3 <s 5 en ™   O 

.«      **      W .i^i    S4      O      C 

•S t; ~ .£ m oo o. 5 "- 
a s e.«  .-a « E o 

- " 2 u 05 -P 

a-2 

o Ä O   v.   U 
S? .0 u 

o -s 
„ o rt 
« ^ ±: 

Ä g Si 
£ E §■ 

§ II g "s-g 

.2 >< "E •§ -3 
2 —  o  3  u 
3 2 a) cr Si eo E g o <H 

0 «   5 " C- 
c  Z3   en 

""  « S c E 
x -S §• -3 2 
^.   4_*   <L>   £2   en 

«.      C   M 

•a Ö 2 .a + 
s 5 J ° M 
5 -S >-° .s 
1 g"8"g2 
zS'i§£ 

+ 
11 

CO I TO 

+ 
+ 
:es< 

=* 8§S^'2 

o  « e E? g II 
=?* ~ S: g ■§ u 

„ "" o o 2 's 

§  2 M ° > 
—   o     -S -3 * 

ts!*&§ 
9 -S - a a - 

po 
5  'C_ 
- J= "3 

U 3    O    C    CU 

Ü    O 

H     > 

x *-" 

^^ 1) <- 
-S o 

00 , 

O 

U 

,0      ü 

£  II 
SO 

■S c o o 

O T3  ^ .2 
Ci o> t; ~ __     . o   3   c 

_     »C30   » 

5.==-   « 2 c o o* r \ c 2  it 

tn  .iS   « 2 "   S 
5   i 3 c x « 

I Ifl'il w        Si <« c E 
«> y ■£ c e 5 
J2    *-   60 tj   en   & 

3 .ä s fc ±3 
"O     C    u.   5    ü    c3 

C3     v> "O   C 'S   C 

•a "S 
9 o 

2 I     - - 
§. a   < 

J5       "5 

cd m 

o cr 
0 W 
£ 13 
"-   C 
4)    C3 
> a a°a 
& II 

So» 
o  0 
9 > 
o xs 

a 

u 
1> 

_ ? 
*^   en 
.s 3 
U   CL, 

* s 
" s H p, o  u 

£° 
£? tS 2 
>•        o 
CO > 

O + 
+ X 

TO lro ■< 

+ 

c   9 _op.g 
'^ ^< 0)   C 
X) — 
_   0) 
So. 
o « 

- Ü 

•O   0) 
u a. 
« " 
o « 
O ,- 
en 4) 
en T3 
«-a 
c c 
o o 

2 u 
a. >* s « 8 E 

■" 2 
O   en S **-* 

3   o tn •— .a s 
11 

s >» 3 
ca ■=!   o 

"II ' 
a. 3 .E 
«■a > 
Ä  cj  ^ 

" t- 3: 
.0 .0 

4) •c 
o 
Ü 

"5* 

2 „ «3 S .2 «=»>.> >.x: x> o ° °f 
SgS|||§3 k-?.P M 8 S 

"" E -= 0*-— «5— ca ^^^ 3-=^. 
— « o   Su   c-oe3c  — o  c Ü ? 

" - '§ i S «2 8 §• J 2 •§ I § s 

-S>     -2 -S o -9 5 J< t3 ~ J c 2 i S- 

* ^ c gj E ! o .2 S..g 0 -g « .9 .2 ' 

oo3>So5.S(_,u_g-.-«2g -S « ' 
rr    trt 

v .i 

cd Z? 3   „ 

>-" 
Q 
Z 
< 
CO z 

-•co   — 

«=   S 

-.^    ti   C33   »£3 J 
ö i: ±> — -s oo o  u X  £>• 

c !io8JiasM»    ( 

^ il-S S^ >»oo«f>s<2>,9S-a i 

§1-83.:« gjs&|^3 s s^ ! 

«       J-       lH 

co O   e   > 
3 c a-a 
u o co -.g 

a « °"2 C t>    C3 

S <?-5  «> 
S ">   c   E 
C Ji   O   o 
00 cd -o   C 

jo  es-a 
E 

00. 

c3: 

_, _ ,0 
■a c £ *" 

CO  .«  ^^     f- o s a t3 

3   3   o   cd 
.S "2 'S  J3 

u 
d. o 

S.^ « .9 g 
" S3 ^ J3 13 
o a." % o 

•3 o o 2 c 
g o ö E — 
S5-° eo 2^ 
3 ** u 3 CO 
OcN a g ° 
*C »  o  fe 

£ cru 5^ 
S3 W   B   E « 

- I S a E 
§|§9 a 

a a c ° co 
SL 2=3 o « 
» 9 o " -a 

c c =s ?= c 
o  E ' 
3< 
O        1 

8-.= 
•a u 

J.S5 

/■^ 'S "O   e" ,° CO 

3-2 

m u   N .2 
."2 '-3  0 

'S-c 
C     0      ^ 
a   oil x 

C3   i3 

c E 
.£? Öö E 

-. J= ■-    C    o 

f 's 9 .E 3 
■5 3 2 n 0 
2  g c cr 3 ,88 

**"■ is •a  0 *3 

0 c «  H "° 
■0 0 
en ^_^ 

13    en 0 0  ^ ° C    « II *-   X   3 
03 *S 

'S*5 Q ■aS:-s 

+ 
u   „  3 
9 5 0 c   a  0 

1 "8 •S   N 

_■     CO 
co —   C 
x:  0. v 

u  c - 
fj   u S 

-sis « ä 
0 « a *<  22 

*2 0 en K 

jo   u C5 
§2< 

en    cd 
C   U 
0 c 

0 0 I, 

8 »< ■~  J3     . 
T3 a *- °! 
O   C 

9 ■■■ a S t«G g K- 
C 0-« x:   cr 5 
DO E HWu 

57 



•     pvoifovont!odlii">l 

<n 
tr 
o 

5 
a. 
z < 
5 
UJ 

CO 

o 

fc m 
o cr 

O 
cc 
H o 
Ü 
D 
Z < 

E 

I      t        £ 
>•" 
D 
Z < 
CO 
z 
*: 
z 

o. 

3 

O 
o 
U 

5<S a u as    .B J:  O 
« „-| &a o &5S5 

££   C'   o5S   ;   o   m 
*-*   60 &0T3   p (j   B-g   Cfl 

O   03   o   2   £   O.U.^3 

3<S.2«-eu"E_3S 
8 o o - «5 Jä<2g E 
P & -3    N    C3   S -K 15    ..- -= 

0 .« .2 g " Ä £ -a •- 

1 £ 2 c°-S 2 'S | S 
g^.a-g-Sila-a 

60 
E 

«"3 « §•£ " E " 

S«t3co-OÄ;§3«.2 

•> ca S* SJ »^ « o g E 

-pi* sJIi'f 

c a ^_ 
— a. o 

.3 >>>, 

—    »- O    4> 

£SSS 
i= 5 o 0 

O 4>    U 
T3   C 

-° TR c 2 
f> g = 
^   !2   _   O If!* 

5* .2 
■2    a   -a .=. & 

Pi   ty öltiS-si-ses 

3   O   w   5 
■2.2 52sg 
g   u. ™   « 
li S.a 
— •=  o  a 

W    S    M    C to   ea   r- .— 
<u   P  — .* 

o -c  c  « a, a « u 

MuTJ   c 
Ü S o o 
C3 -2 XI    C 

_    O    DO  03 

c & a -S ! 
o 3.2.S1 

c    vy    C3    ßl    p    i 
|co2^ 
•S   8 5   ^3   ; 

•S o-S s c" 
*" J> c 'S o 
•I ^ D a s ' a     2 E 

I-a. 

+ 

h-o: 
-ts- 

— Its 

+ 
Ä 

— 1C4—■ ICN 

'S CB     H     =N 

o. „ 

=3     CA 

a. 

ü u 

c .a 

Ö   3 
O   CO 

£   s 

II 

.—.     2 a." 
60 -o 

§•2 

1 

<u 
3 R Qi    wir 

3 XI Ü S 8   s 
vi 
4) 

(M — IT 

+ 
^   -!■» 

1                1 3 + 
C 
o 5 P •—i F    ■? 
ÜÜ Q> —ir# —Id 

'•3 5 
1 

t*4 — 

CM 

Nm 

O 

■        i 

II 5 ^b 5   ^ 

.c QT 
+ 

CM — 
o o 

+     O 
',~, _. n "Ä    -? 
c3 ii 5 —^ 5 -r 

J=  ^ c — 1*3 CN 7 E 
T   —id >< &■ 

5 o 
+ —Id 

E X) • ' 
en 

E 
F. 

CO II II 

00 
■c 5 ^ 

o 
3 >^ >» o 13 

r~ c 
ca 

X 
.— H 

r~ o 
u 
x: 
H 

58 



CO 
CO 

cd 
u. 

C 

CO 
4> 

rr 
o Ä 

St 
_i «2 
Q. >» 
7" 3 
< 
2 

O 
u 
c 

UJ 
O 3 oa 
rf E o 

"■» .E CO 

o 
1 5 

O 
CD 

o 
cr 
U. 

i ^—* 

7 
5- o So-« 

_J 

o 
cr 

7 

Ss 2. 

W "C <     < 1 
o o 'S II II         II II 

a 
7 

go oi tC bL 

< •§ M ** <2 00 „ 
.5 c 

m ■2 2 
V>     Vi 

S   ° 
O   " 

7 2, 
5 
< 

i 

5 
•<c 

i C/l 

t- (-. 
•< < .ti 

7 7 t: 
cd 

5 5 cu 

-c -c c 

h. en 
< 

1 1 
V) 
c 
o 

a 
Ida O r^if 

II II H •B 
•O O ■aj o 

3 + o 
K* 

5 
o 

>- -a <o .e 
«j  a  2  " 3oS2 
O     Q.»—'     V> 
O   u1'    .   O 
2 T3   tS    Vt 
-  8  O..S2 

3 u E 3 
„   t-  *-   tfl 

.20.C« 

w   J>   00 8 u .3 c: » 

sis 
«ot« 
c E o " 

W .£> T3 

•° g 2 o   . 
a n u " c 
-ÜJ £  o _       ^ c.2 
A     ■'     d)     fl     - 8 P -^ -o u 

tfl    r    «> •-    S 
o §5 a-o «> 

.—    f    O    4>    ft>    c 

§ ° ^g'o I 
cr c w E «» — 
So .a -s So 
I'si ss-s's 
2 3 I »£S 

- -3 - g £ .5 '. t = 
..     .1     ..     .j     o     „>j. 0 

2 2 a 5; .a 5 

« °"   u  o   c  <u 
3 5E3S 

j> > s: J: O O g oojajj^'C 
g'gC-g g S -g go "£| 3-oo°ontj££:.<2-oE 
C^,   ^33"S'3,i-iw   Cw   rt   O 

2£>«ciiEt:t;o«HÜ 

;8sj2«us?«.26e 
8 o-5,-2 «^ a S.i «— o 
3Ji«-S£U0. = 3 ° " 
" • - ' Ü « B » O £ f_n 

V; c -» 
O 

(U 

^.&.=:  ^sS .9 S g § I •§ -5! 
r- u oo^E •= £ 2 v, E e g 
-:-'-rra33-'9"Kt)Oo 

P|c.ao^§3| —     I_   .— —.     TO     _ 
OtuedtuOoo _^ 

S H. 1 S g « ^ e 1 g"-S «< 

V?    rt   TS      ,*?•*-(    ui "'    O    y    o 

8 5 §-2 
3 o — " 6"   0)   u  Ü c   <-> 

o  «>       «t>       Ä 
c^u — o„ 

2 g'^ — ^«3-Eo 

0 2 a 
Z-P.M 

2 u ' u   tu 
-^ o ■« 

•°, o •a T3 Mrji E as 

5 
J= y «  2      — 72 —      — ~ '5 
" Ä - -- ^ - IS 12 S 1 

S" ^? 3 P o E 
j: ° «  o 

u 
1 .3   "   «M 

: ^3 1 P   ed 
O   tu 
Z-o ">,öö 1=   5   o   £ 

C    U    3 
g.il.a.g.asil 

>» O   %   — "O    01 *r! 

■2-H IS 

o- o 
y  u x:  c  op 5 
§ -5 * .£ H .22 

2 

>^ 
Q z < 
CO 

th
e 

le
ft 

ou
r «■w 

t- 0 00 
•>a •q- 

S|« 
C 

E «^ *" 
0 0 >> O 1 O I 
•"eo-o 
«> c -o u -a ■-* —^ 
5-E2 0 c •^:  « 

ra O 

5 11 
.E   0 
M   <3 

I 

c 

0 

CC> 

O 
u 

1 

C 

0 

st
em

 i
n 

th
e 

pi
n 

re
 c

ap
tu

 

0 
II 

0 

11 
0 

II 
0 

II 

et» 
Vi 
0 
Ü 

?E  n C| c a J= 
c* 

-^ks 

u^a- H >* + -N 
3'5 1 —tM —it>» 

1 

oo
rd

in
a 

ar
is

in
g 

Q
 a

nd
 

O 
U 

H 

1 C 
"55 

2    - 
^^00 

0 O O 
O 

0 „'2 c\ f^ cff fn 
VI T 

y-> c  n 

+ 
<n   O" 

^*ra '0 
-to. 

H   10   „ 
+ 0 

0 
en 

1 
. 0 

u - 
.§.2 

E CO 
0 
0 00 0 _, 

O 
c 1 a 0 O 

■t 

nr
ot

at
 

m
et

ric
 

pa
yl

o 

+ + (A 
O 
O 

+ 2 3 
H a* 
0 «> 
u -a 

u  0 
u 

J=   <n 
.ä   0 

<& eff 

1 

u  0  u cr> <J^ 
0 
0 

fo
r 

a 
n 

th
e 

ge
 

s 
to
 t

h 

ert 

vt 
0 
U 

+ "to 7 
0 0 

he
 o

ri
gi

n 
le

ft
 a

rm
, 

ob
ot

 w
ris

 C 

*n 

c 
O 
0 

0 
0 

td ,0 

a 

T 

CO 

O 
O 0 0 

Ta
ki

ng
 

as
e 

of
 th

 
nd

 r
ig

ht
 

E 
0 
c ■0 eu 

II 

'S 
0 S 2 < 

0000 
0000 

trt       ^     OS     CU 
O     -=      w      C u    CA    o   .=: 
Z.      -s     o      « 

I I 

S   .E 

T   1 

T   1 
CO 
VI 
o 

a-        -r 1  r 

o^ 

11 " 
.-^•cS" •c£~ 

0 0 

&. 1 1 
■< — 

59 



co 
<r o 
3 
QL 

UI 
Ü 

CO 

o 
i5 m 
O 
DC 

O 

o 
o 
Q 

I- 

m 

vt   «i   ü   «'O'O   00 —: -fi   > 
5 — *C K «> u c^Tog 
° 3 u e co So fc; a:-0 £ =3  o  c «> ?J 3  g   «»ü 
U   ^   P   O-T)   2 -C co T3 

ll|l--1-=l-2- 
co   00 _e ^   o  tS   ?>-*-' cj"3 
•o en "5 iS e 2 3? -j »> 5 
O  o  o       £ oo e *"• .S •£ 

•a (ü u «> o BQ to   4> 

:  o ■£ 
,  IM    Q. 

hi-"  »  S .S <C t2  fco — 

5   o. -O     •   3   <J •=   to   S -C l£ S   w> ^3 _ •   3   w   e   52   £   C 
8 | § ■§ .& „ | aa T, 

>1 iSi&ltf ;?s 

CO    « ^ CO CJJJ •—    r- 5    O 

S.--gB2.sf si« 
s§,glS 8****8 

I -1 

I 

I ~ 

CÜ 
c 

I   ~ 

II S .s> g S 
— T3 co *\    - 

•o  e x:  co 
!S S  3 ~ 5 o o 2 ^. 

CU    u   O   D- 
fc  K "C <u 
o £ jy -e 
<•>-  c T* 

— CO *- —'   K 
o   U O   Mi° 
C-  '— -C   ^2    ^« 
CJ T- -   C   BO 

> .5  u 
■C -   M 

a   co-o  5 -g .o £ 
E K c       5 o - 
-  fc  a  2 2  >," 

_o 

o 
•"*   3   *3 

JO 
"3 , 
00 
c 

o S K.2 S 

«.coOcS.CU.li> s - .toOCo.CO.ii> 

^tb-^g-g-SsC g-Sj 

■s c > « •§ « a g .2 g 
« c a,--2 3 o c ° c - *-   >   00 co -o •—   es   >^ ?>   O 
cooco"Ecg<o£ 
££   „   Co-   3   O        t3 — coü_%oöfl.-t-^3*i 

oi  a 
•K   -=N 

cc 

f <£• 

I  ~ 

■si-3  - 

4}   CO      -   o 'np CO 
o -a -a co 2 o. 
f> — « «> —  u 
O. 3   C   U £ -5 
u .2 a a " «s 
x: > x ü c o 
— XI   U T3 ~* ^> 

2   en ■-■& 

a o g 3 S V 

« v^ 4J   5   •- •— .-3 
T3   °- 2-.° o ts u -^ 

8   SI   O   O   = 2 ? 
S S o 5 o S §• oo 
SuSS?P^cu co CO   -">  CO    >     C-     ^ " k. 

5* u u c oo s -o 
O. 3 CO T3 

J= -C   „   O.C4-.   S   O        t3 II 

UO «oC3-'3u= 

— CO 

" en i -a 

-Sal 
•C —  c  u 

3 a. 
O ts. 

13 o 
s s 

3Xi3xraci.5> 

2 S." 3 g-x; -o JJ fe u 
C ^-^ .Si   Oc>. 

<« a !3 

U   o °*   o   3 .O 
cC'soOtoco^coa-i 
u n "S o 3 — S .2 C "= > oo g a ? S 0.3 s u 

— -0 2 .£ ■ 

U CO 
c _ 
3 o 

e o _ 

-C  u 

O "c 

o."2B 

? «> £ c S - 
co   c- ,5   O   c 

SUE». 

= c co -s .2 S «s .c 
— ■S3COZ3X!" 

_ S ° 00 o a •- 00 oö 

ä§c§8.2x?S855-Sc? 

"T -^ 

t 
is 

ea
sy
 t

o 
= 

Ö5
, r

es
pe

ct
 

rig
ht

 a
rm

s 
•k

sp
ac

e 
ar

e 
t 

st 
be

 t
ak

en
 i co 

11 CO 
c 
1 
0 c 

>   o   > 
c c 

■ox-  c 

a 

3      . 

2 ° 
p   CO — 

a) •—1   CD   c 
3       .1- .3 

" o p £ -c ^ 5 

•5 co 

o 2 
=t E 

>    . 
:c co x: 
U  u c 

£ o Z3    U 

<U    a) 

o < 
(li    c- 

• 60 C   c 
C    3 

y u ca n 
O o it i. — u 

—   00 3   co   C H O 1—  o u  o  o o 
O 13    C T3    C O 

ü   Ü 

0^ S   c   "> 
-    g    > 
CJ     CO     O 

xs
e!

 
co

n 
ob

je
 

- "3  fo 
C   t-s 
C   co    ü 

MO   c 

w
ei

 
(«

). 
0
 C

O
 

at
 th

e 
qu

es
 

se
 t

w
 

^ £o}i 
1- u 

tic
e 

al
l 

en
 t

 

O) 
— UN 0   C   u 

Z 5  ? + ^ CO  u 
3 O   C  Xi 

•3? .(
5 

si
zi

 
se

 

t~ £. a   P 
— IcN w 0. g 

c—    p    CL 0 g £• II 
~> 

th
ird

 
y 

of
 

a 
co

 

cu .—    u, 
x: .-c   0 
w Xi      . 
00-3  ^A 

>■,= (- 
c—            < 
co    4> 

s-s 11 
'"^    tyj      u 
O    3   O 
—    tfl       ' 
u .t;  co 
«>    C     Ü 
2ES 
3 " 0 co   Q. u- 

>-' 
Q 

< 
CO 
z 
^: 
z 
r> 

.  en 
:cu 

■H 

•Q5 

a) 0 
0 

0 
K P 

ä V» 
a) 

^ 

60 



CO 
rr 
CO 

CO e 
o 

tt 
<) 
h- o 
i a. 
-> 03 

Q. 

s *}&£ 5 ■& —' .is B «s rs 
2£> Jag 3-2  o 

£•5^2 
*3 

o. o — — 

s «» E a O ** s 
t- •* *rj  **•*-•   w   ea 

"   Q.U   O  w   d 

O   o     - 'S    .0>-   M 

"ja ^>s 3 u-5": 

ü 

(0 
o 

•5 
m 
O 
tr 
u. 
O 
_i o 
tr 
H 
Z 
O 
Ü 
Q 
Z < 

_J 

m 
< 

o  o 
II    II 

tt.tt.tt. 
»  .t»  :t> ff. 

•llH 
■13   tO 

5  ^?  & 
tt.    a.    a. 
t> -ts. :tr 

t-   r;   E 
_   O   B U .8   U 

B-l i S s * s « 

8- g » &3 s s E 
•oO-gtoUgMB 

.3§'3|J5S}}3 

.-2 •* .S o> c 8 S g- 
,0«'fic,Xc<i  — 

J=1E~UUB.. 

» ö *■ - a ^'~ ■ 
2 Tl .S   U   3 E .-. cj   u) 

CO   C   K   {«   Ü   o- 
03        -  -- 

H*s > 5 3 o 3 £J .2 o u ^3 ~ ~ 5 

eg s|g.|^t: *£.s   ** 
° 2 o 3 S u £ o  o  « 
J3 £ Ä  CU to 
c .op_ ca g 

gI -2 .a « 

Sä 2 B c a 2 5.2 

o o £ >% 6 -o e ^ -° •£ g 

n "  ü   fc- ™ *J ">> 
ö g S.= c .2 « 3 s 'S 

» g ., 3 „ ü v n 

-3 
,a> «) 
's * 

J)  o  o 
« **  rt 

0 00 £ 

«'g 2 
E -a -a 
•3 -a « 

vo      2 

B 8 <3 u       K 0    . • 

C3 T3 
3.Ä" 

•S-o-Su-nc5        =* 

«3'c7S0'Oo'£      c J53FS 

o  > 

8 g S •" Ö -5 - >• § 

_    _ > a 
"■"»fiaggli 

— O   S   E •*• "O 
U O <TI •"   ^   u * * _ ? o >n, 

O   2    C3 
u.   a,   O x^caracooo-z: 

83 2 
J)   O   D. 

«55 

3 .5  o 
O T3"S   O   O 

o c £ "S 
g s -s S o a § g -a <* u •§ ^g.» 8 g - .5 

0-» 
3 ■£='•* 

5 « O g 

sue 
vi   fc-   C S o t3 

^^•ii.Ei|-si!li^lI°Bl 
3«i- MB^ OT; ^ -- D-ü 

»2äl«5Oi£a'0'ou^ 

K 
0. «>< 
u tt. w. 

.c 
? 
u 

o> PJ a. *o O 
-Ö« a — ItN JJ ft. tt. VI 

5 ICQ + ^ 
i-a. t-tt. tt. e •o< .53. •&| 
-ICM II C tt. '</i 

II 
.a. ■^ 

O 5 
l-tt. 

0) 

K c •o> i-i 

a — ICM > 
0 II r—V 

c "^-^ 
3 
O. S> *U 

C3 at >. G< 
-J 1 

= •5-0 oi a  "  e  £  M £ 
?5feE|.:c 

E a .s -S te -a-s, 

P-Cog5So-S£a:5«P 

c 

SI 
o 
•a 

H 

2 

a 
z < 
CO 
z 
*: 
z 

3 .§ 

«> - 00  o 
c   ** 

<CQ 

I 
tt. 

•O 
+ 

+ 
H3        ~ 

cC 
+ 

o o 
3 en 

■a 3 

? c 
o .2 

3    U 
E  E 
»    3 
c   M 

S .8. 
BO *- 
« -o 
-1  c 
o   « 
•5  >• 

cf 2 

t- 

"a 

+ 
*—' 

—1 l<S 

+ 
a 

a 
— ICM 

o 

T3 
c c 
C3   O 

"I! 
>   g 
a o 
4>   — 

=5 2 
Vd    CA 
00 TJ 

5 g» 

"S'E 
3 '£ 
or-5 •>  E 

ft. 

"EC 
a: 

a. 
ICQ 

+ 
o. 

_ + 
ft.   :<s<  1 
O"    a.  ^-» 

^7 a? 
1 at x'oa 7 

•■Ui     *~s   v—' 

II    II   II 
axa; 

S.I 

E •* 

a a, 
o o 

'S. P 

-a 
a 

«2 

O.T3 O 

•s S    a 
E.a a ^s 
S I 
5 g 
m u 
5   " 2 « 
C3    C 

l'i 
ea *-* 
o **-* 
u o 

11 
•a « 

g-5 
1 E o o 
= <i: 
n u 
00 c 
B S 
3 g- 
^3 
0.0 c 
•-   B   E 

8 %X 
E rr-5 
•S 8 ° 
>l  c   s 
«   en ^-, 
g n   R. 

P  o ^ 
O   (3    »1 

.8 ■» <c 
to *"" 

4*  a   00 

CN 
NO 

7£ 

5 

I" 
I 

.8 u ^ 
■E.-S 2 

J= "C o- 

Q. c> ta 

5B» 
0.2 B 

E.S 

0. 

I 

tt. 
ts< 

tt. 
t> 

I 

tt. 

II 

tt. 
.t> 

I 

."-'        °- 

vo tn 

+ + 
O 

0 O 

+ 

§B    «   3 >    5    3    B 
„*   ffO 

te 8  ■ 3 
S £ 2  B 

u u 2 is 
C3   *-    c    «> 
U u-   o  .E 
_ o 00 - 
B C- •>  8 
C3 - -  0)    B 

•S&S.S 

^-   i_ *B    3 
£000 
^   Um   c 
S  S>  C,   a 
B   >   cd   -- 

H.-S a £ 
13    3    M 

to   E   o   n 

^     2 £" 
II   II 

•5 
■5 

2 E^-^c 
"    O    >    B 

5 Sf-2-S w 

«'S D.-° 2 
o a S u 

o   >.'E.'c "« 
.«>-a e- « B 

i3   .      to  fsl   *- 
"SH»2 
.a -a S •-' o 

g 1 .2 1 

13 
•ft, 
t- 

■ft. 

a- 

61 



<n 
rr 3 
O i— E 
!? o 
_i 
■) 4> 
a. « 
<     a 
UJ 73 
if o o 
to 
O 

•o 
ttj 

f- o 
o >-. 
m 
U 

o 

O 
O 
Q 
2 
< 
>- 
_J 

CD 
< 

1 

t£» 

yo U 
c M 

a o 
cu zz 
en.o 

II 

x    <• 
I    ~ 
a 
>< 
 i ■_ 

tn 
O 
o 

+ 

+ 

a. 
H 
+ 

«      — it» — 

*" t_- <« v. c 
•a ^.< P t: 

C3 LXJ eu <*_ C3  T3    en    C 

S J3   60 O 
CS   «    C -S    " 

S   S   3    C    ° 

to o -o o 'S 

££.sfi 
en   Ut   C •— _}. a « 3 0 

w« &£« 
•S  o .52  « .E  c 
>  w>.ts ■£ -a .2 

Slv .>> H 
W) 

ej 

tu ~ 

eu   ~ S — •> — 
S:    t;   to — 

en 

> 
r    CO« 
~ o r  c 
■° M a g 

>2\S 5 

•£  tu 

a. « 
a. c 
eel   5j 

S-s 

■o-o 
eu  <u 
.o -a 

o 

£      C    u 
«2  eo_ 

;5.E = 
1-1    U    3     - 

•S-a-5 

c a 
t> .. 
C to 

a. Si 
o a. 
o E 
> a 
a x 

t,2c 

5 ° o 
ri ~   v. 

¥   Ä   J>-¥B 

4)   «   = 
~        > 
O   JJ   u 

j^     -a ■— «J 
S 2 v „ _ 

60.« 

^ ;§ «> »•= 
55      p 

tn   al   -- 

O    CO 

I 

E 

a* o  c Iff1 
(2 _   « 'S T3    U 

c « ;~ a> 
fc- 

.o •a 
U 
a Ü 1— 

ftj 
Urn u -a 

'S S c 

«   r— c . 

ö - - " 2 
tn c eu O tt- 
"! — T3 O. O 
eu   _4      en 

g£2 SJ b 
S.Z <- V, "H 
o<   °=   ° 
S   .-S S£ E« S c_ 

O   u 

tn —-   *J 

,.-60« 
o -*.S 

•K - E 
en c_ o 
= O C 
O w "- 
en en eu 

60 E T3 

« S c u ä e 

CL w      Ü 

a 
a cf ^ 
52 _o S 

=  g.2 

(2-1 

ü   -   ej   >. o 

.i|g,< 

JB 1 § i .£ 
rc3       o r~ 5 

c -5     —' o 

CU *a 

s ° 

§ S 

_ "5 E 
Z .Es 

o  S 

~ c 
>-. i: 
.o c 
60g u 

•o  « 
tn.E 

to O 

— c i: > u 

tn - a. o •£ 
- -o c -  = ■ JO V v   C   tn 
C    en <-    O • — 

, B   3 ■=   O -O 

>' 
Q 

< 
CO 
z 
z 
3 

> V o c ^ s.? + 
o. + 1 a. 
ca s —. c o- 
3 etl   o 

ICQ 3 -s 
tu T3 
og 

j£ 
w •Q< 

r£        II 1= & 
5 2 

ts 
2 o 

■S £ 

II 
a 
a. 

.CQ 

2. g E ra .5   3 
«£> E 
S .52 'c 

•gle 
■o i •£ 
eg» 
go   > 

O    « M 
^JD .2 
•O    <-> Ä 
u- *I3 *-* 
0>   t .. 

=•  a   a 

3 o   S 
<»  Ä   r- 

r c E 
g-g s 
S   S3    tn 
> -r '" u Ö >> 
.2 c := 
-.2 S 

u   i -a 
•2 5 S S S 

1 E 

+ 

E a. 

x 

o 

l~a. 
ICQ 

.cq 
I 

M 

**3 TJ 

0> O 

CQ 
T3 

U a 
is o 

c= er o & 
ICQ  — 

^    tl       .3 

CO tH  ÜJ   eel 

8s cf^ 
N    u 

11 o 
4> -a *- "O —- u. 

co jo   u   O. 03 

"     o c .5 i B •ej     *- O  o  g .E 
*°    -h 3 % S £« 

S 3 S S u 
"O "en    C ZL a) 

C3 

J:  c 
o  o 

^1 
cs 

.   C3    — 

8T3    C 
E   ^c-o 

•s s S i 1 slip 
Sä 8 tu « 
« K •«••£ ?• 
•*    S     U    S    **     M 
g 'C  c ?  »  n 
i3   Ü    J>   — *5    en 
>>SJi 5 ? i5 
o   «    u   «1—   ä 
w ,-, JZ £ o w •;p 2 — o £. ü 2 ^ - o ^ -JJ» 

O j-   Q. C _.   Si 

? co -o vo  " 

=1.   ICQ 

it 
II   II 

UJ 

— Its 
+ 

:t> 
el. 

to 

I 
a. 

>o 
I 

■o -t-. 

s 3 
+ 

ICQ 

I 

ICQ 

II 

I 
o 

I— —\ C-. r- —' 
*o o- 
•5 UJ 

e- 
— Its O 

c 
1 o 

62 



CO CO     ö 

 p- 

■■—CD 00 
CO 

dl 
«Di CD    CD CD CD 

t c   C * o   o 
! Ck.-rz * tn  o 

j 
&_ 

T3    C0 

i 1 

on
tro

le
 

f A
ng

ul
 

I 

ji 

\ 

ü   o 

-''' 

a »         8        8 B s      s      a ° s 

o 
CM 

CO 

CM 

CO 

tn <u 
3 
er 
i_ < o 
h- 
T3 

A                          CD 

CM -T--;/; in      . co"2 
Z3   /■' 3 (  ! =        3 ro 

■*«■„ -    NL             E 
"---. >.>S     £ 'yN ^x        o 

. '■><r        <-> 
^? / *• 

—*~Z^z-z-  
^-—I^' 

O     " 
CM     1 

CD 

CM 

CO 

•*     = 

5        3        3        5 

a 
2 < 
CO z 

CO 

■ "V •'     - ' ■        < 

s-*""" S / 1 

«*"""     / 
;' 

S> CM im CD    ' 
v> 3 N 

\ 
'x 

3 

0) 
0) 
3 
CX k. 

.2 
o 
c 
o 
o 
"Jö 
c 
E 
o 
2 

CO 

CD     £ 

CM 

O    M 

63 



co 
er 

§ 
Z3 
a. 

ü 

CO 

g 

m o 
EC 

o 
cc 

o 
Ü 
D 
z 
< 

CO 

p=s C3    _ g>o 

Q 
Z < 
CO 
z 
*: 
z 
3 

£ 

E 

bO 
■o 

r- 
vO o 

en 
j; o\ rN 

a 

8J5       S 

co 
CN 
co o 

01 
rj- 
co 
CO 

o 0 

7 
o 
co 

s S 
CN 

CN co 

*2 
'S 

E 
£1 

.    U    4J     r- 

.5 o 'v> -2 0 c    .x 
■—<-C    3   g £2   O   f»   «> 

s rf a = 8- 2 § s 

™ 8. & «> 8 «•- 8 
ä   U   V. OOXj   Q, 3 

>  M 00-=  o •= 
«  0 c :£ <£•    - 

2>ü  c -a < •-  a  c  « I xi a -—    ■ 0 

3 *S   ™ U 
u 

o .5 
**     ST    ü     *L» 

• S -a ° -o c 
, 01 a es -a a 

'-o 

|~i g «, Jj .S S-S 

.3\E § -s f 8 S.-S s 1 

r   »   t   (I   11- ■±3   a   ""   £•   c   eu 

c   y   w   c   a  4} 
C   —   us   Ugj 

PS    g£|2.äg3S^C o .> e -o 0. s .9.-5 u o 
»> -Sä c -n c .£ J: <O 

a  c E-  3 

'a «; g , _ _ „ 
■c o H o « 3 s u 

^ ^ "s ti c ° c II  « a S 2 •= « u 11 -«= >-£;•£<»-. > « .0 a„ o -g x> 

_ E « 
_       c o c •" 

u 
c 
o 
O 

s°gg*E a- 

O  o>  d  22 

E 11  E?"c3 ts > 8 " «i 

rt ü 5 -£ *> « cr      3 
£*<2o=St2W       « 

c» J2 co xj 
üacu 

1 -.= -11112 Eß- 9-5-3 o 2 a y « 

M     °   U    E -O    o. 3 .9-'S    g   ° 
^ Jäe-arSe-gsies 

lo-S'sa-oEisg-s 
E.nOv.C'-H^Sga 

£ Hlsilg-s g.s 
I g a S « «fjx; 8S 
«5.Sgo.£x:s«2g. 
?. Sg-gS S * »OS §* 
8t§ig;-s.§l" 
CL 55   fc-   3   »-   S      -   ea   *3   (j 
« °*^o c o .2 a j- S2 •= 

•S .-§ S2 ^ .2 g •§ g- 8 » 

* e< e s -s S -i-« s £ 
«ug>>goax:3S 

«SäSEESaS 

<cv»  JO  o  S'C*  c 

3ÖSJH-S   ..2Z»„3 
£§S      -Sat    OOE..S 
"  X  „ "a  > E  O.—  K = S 
S<S-g^-g^<  «'S M | 

S g->>-o E-o u Ü t x; T3 
t; frs S O.<=T:X> oh c 

°x;a3u2'>>«o— c 
p«Jxi"<uEio-— 

R-SS9-«5-aan e      u.~OX!cO.„   3TJaS 
"O    <l'.2;cn^w-!=a»Jn-T;'" 
■?    Ü ?3 "a e£_g — -a TT        —     VJ    fc«    wi   *^   -—;        1     i_t    4J     r- 
*   •Si=5S:CuE'c.Sax1 

j?   X).E.2oSu'fis»«» 

oSgx:guK-fE      _ 

c 

V < 
05 1= 

< SS 

. ON 
u O M_1 rs   «\ 

►i»   SA M u   2i   N   r-   < 
5_i S "       « .2, 

U   Ul    C >    f    c 

tm 
,ü  ö ■ 
, .. CO K   C 

»Xi a  .* ^^   a 
a is =*  a  E — 
•> t= e 

0 § 

2Eg:2>xS"MSV 

0.2 E.EoP-5c2<oS 

64 



2 °° 

CO   o 

Ü   -^ 
C3     O 

=§> 

§§ 

If 
>-" 
Q 
Z < 
CO 

z      ^ -S 

a 

< ,3 

g-p 

= E 

« « £ 

o Z 

E   i" 
P ■- 
E   e 

.i£ 

.5 ■« 

z § 
"r3 
OS   „r 

■O     3 

es   a 

2 £ 

■ 5 
U 

it 
E 

o _; «^ 

< 
6 g 

;° I 
; g <-> 

J.  CO  -S 
o —   e r-i   «   s 

Ü-2 ON     =S      C 

d  «   5 

in a.     - 
Jl    3    60     . 

s ^ •= ? 
<   > 

; < s 
>< § 
!   »'S 

ä fe < .s 
=8 "^ -a Ä 

?•■§!! 
C    2      r 

; <-> 
! "a 

? 2 I 
8* -go 

(j   «   c 
Sue 

3   "O   . 13  H '_- C    «  C 
S r 5 
5 °* u .5   - v 

O"   C    Q. 

2 .o u 
E « T; 
a « .-S 

ra VJ 

S o<  c 

•s ^ ~- 
X ^    £ 
•2 d. S 

~ —   cr>    tu 

"° -8 3- 

1  | = 
°- 5/5. 
PQ-S 

_:'•«> 
—    ^   -^    C3 

"^   00 

>^ 6 
w ^ 

1$ 
1-1 

° ^ 
to ^r 

's £ 

tn 

P    S 
^?    3 
-   Ü 

x ° 
■o 1 
S E «    3 

t UJ _. -o 
u   (A 

2  u 

» > J 
-     § 

: ■- a 
! a -s 
: &^ 

o M 

' O E ^ oC 5 <s-:-2?5 

§i 

E  a 

O   O^ 

■a 
=> g 

1     tf . z z 

c .ü 
.2  h 

:.£-.'■ 
Ö .5  £ u_co   V 

Z  S 
_' 03  .S « '*g! 

n< U-i 

to C) 

-a a. 
CO 

•n « 

«n   5 x> s x: 
4) 

E 
O 

a. -» 
o ü" 

CO 
CQ ? -^ J 

t> o 
co Z 

- i-2 ^ 
1 e E o 
D <ü  Si 2 

•E u e 

SOB8 
u. U  2 •£ 

o   5   o   | 

-   -1A II   N ■j= "*■   >> o 

— « g ■* "3" 
S«2| § 
-"   £' | 
.o O o ö »' 
^"       *    en 

i> ^ •— J= IS 

a c 8 1 2. u   ^   g   n   O1 

^ cJ °* <J  § 
fc     4>     C     *>     Q 
^   u   a u    ' 
S 5 ■" S :- 
<   a .S   a   g 

uf«? s s » 

s 
i2 *^ j/ 

05 . * 

3    ■;        - 

S      5 ^T, 
C5 
t3 M 
I m .5? 

I U 73 "a 12 

oiöil 
c E u o 3 
.S| 3 O <3 
tj ^ CQ .5   p 

§   - ° a   ■ 

5 <   a.% oi 

S S 
o J? 
ei < 

.E < 

2 S 
§ °. 

ii c    . 
°- £ < .2 

■c   « 

•I s 

v) ; -J 5 5      ■■= 

.Ü 
a 

>   «    re 
.015:    j= 

•i  o    - S  S 
2 •= 3 -S.E 
'S  S N OX 

- tu H   O J^ 
J <  «  E 

,-^--'^ 

c .2 

Z    M 

S 2 

T3 
ca 

o 
Cu 

C3 

2 „-< 
c 

« .9 s - = -S »1  o  > 
-•US 

J.2  5   E   M« 

2 i " 

J^    Q.   c    o 

u    1 
CO — 

•§ 2 

°- ci. o.a. 

.O    ON 

o z 
CA - 

■5 s 

S-2 
CO 
Ja S. 
a. <u 
•c 00 

!< \     g 

c  c 
o  o 
OS: 

3  •■= 

T3   O 

o  « 

o < -o    . 

-2 CO X   JO 

u 5 a 
M-^ CO 
O «*» "O   1 
ON C 
—4 c3 

O x: 
<si    u   °- 
2 £ 0 

ll « 
f ¥ 
S Ji 

2 _■ 

4  & 

§2 

u; 7j 

CO £ -        E 

65 



O 
PQ 
O 
Pj 

s 

o 
I-} 
o 

o 
Ü 

> 

PS s 
o 
o u 

CD 

H 
H 
in 
I» 
CO 

PS 
o 

I—I 

% 
< 

in 
Ö 

.i—i 

Ö 

i-5 

o 

Ö 
cö 

coo 
O 

-Ö 
cö 

-4-3 
S-l 

8 
-to 
£ 
O 

e 
C3 

O 

C3 
-£ 
o 
13 

.O 

oo 

CD 
CD 

e o 
-to 
G 

-to 
&q  co 

H 
CD 

-to 

e 
ö  O 

o 
f-5 

CD 
CO 
G 

O 
&- 
CD 

-to 
s 
CD 

CD 

CD 

-to 
■«■a 

CO 

CD 
£> 

-to 

G 

co 
G 
c-3 

-t-= 

Ö 

-a 
? 
-p 
CD 

CD 
■+? 

CO 

cö 

$-i 
O 
cß 
CO 

C-+—I 
O 
f-i 

-1-3 

.1—1 
f-l 

PH 

<v 
OJO 

o 
CP 

Ü o 
coo 

66 



CO 
-4-3 

Ö 
'3 
p 

-4-3 
CO 

Ö 
O 
O 
o 

.1-1 

a 
o O | , 

o Pi 
-4-3 

Ö 

o 
p 

-4-3 

o 
-4-= 

o 
O 

Ö 
o 
O 

o 
CO 

-4-3 a CO ,£) 
CD 
CD CO o 

o 
CD 

.l-H 
Pi CD 

co 
CO 

o 
• 1—1 

-4-3 
a 
C7* 

co 

O 

>-4 

Ö 
CD 

O 
+3 
Ü 
CD 

•;? 

CO 

p 
-4-3 

Ö 

O 
CO CD 

-4-3 

44 
CO 

42 
H 
CD 

H -4-3 
CD o 

ft 
o u On 

+3 

CO CD 

• l-t 

> u 
> 

-4-3 
co 
>> 

CO 

P 

cö 

faO 
Ö 

•l-H 

Ö 
Pi 
CD 
> 
O 
O 

Ö 
O 

• i—i 
-4-3 

'o 
CO 

,£5 

CD 

• i-l 
-1-3 

CO 
Pi 
CD 

O 
O 
Ü 

CD 
O 

Ö 
CD 
P 

t+-i 
CD 

CO 

CD 

Ö 
CD 
P 

P-l 
CD 

O 
o 

p} 

CD 
CO 
O 

Ü 
1—4 

a 
a 

.i—i 

Ö 
.1—1 

-4-3 

a 
•4-3 

o 

O 1—H l-H 
1—1 
h—t 

67 



CO 

Ö 
O 

co 

CD 

CO 
O 

• r-i 

Ö 
CO 

CJ 
0) 

Ö 
CO 

• rH 

hO 
Ö 
CO 
f-i 
b0 
cö 

r-3 
M-I 

. O 

Ö 
o 

• r-t 
co 
r-l 
CD 
r> 

CD 

CO 
Ö 

• i—i -a 
j-i 

o 
o o 
CD 

•+3 
CD 
SH 
CJ 
CO 

CD 

+3 
CO 

CO 

3 i—i 

CD 
-4-3 

CO 

CO 
M> , 1 

Ö 
• rH 

CO 
r-l 

Ö 0 
r-l 

CD 
> 

-4-3 

CO 

O 
0 

f-4 

cd O 
•4-= 

CO 
r-l 

-4-3 
CO 
Ö 
O 
O 
O 

• r-l 

a o 
Ö 
o 
rH 
CD 

T) 
CO 

rH 

O     CD 
Ö    ^ 

M-l rH 
o CJ 

CO 
-4-> CD 
CD 
CO -Ö 

CO CO 
• T—1 

3 £ 
u s 

-1-3 

CD 
-r^> 
CO 

(11 CO 
-4-3 

"cD 
rH 

CD 
rH 

cö 

CO 
CD 

-t-3 

cö 
Ö 

• rH 

rH 
O 
o 
CD 

CD 
r^ 
-4-3 

Ö 
CD 

r^ 

CO 
CJ 

CO 
Ö 
!>> 

X3 

CD 
Ö 

• >—i 

cS 
rH 

-t-3 
CO 
Ö 
O 
CJ 

CD 

-4-3 

CO~ 
Ö 
o 

• t—l 
-4-3 

CO 

cr 
CD 

+ 

II 

+ 

9- 

o 
+3 

-4^> 
CJ 
CD 

'*—i 

CO 

CO 
>> 
CO 

CD 
rCj 
-4-3 

o 
Ö 
O 

• rH 
-4-3 

'o 
> 
CD 

CD 
O 
cö 
CU 
co 

CD 

CD 

*< +3 

hi 
9- C^ 

-4-3 

CJ 
.1—1 
rH 
+3 
CO 
CD 
r-l 1 1 

CD 
-4-3 

o 

r^ 
CJ 

CO 
CD 
CJ 
?H 

-4-3 

Ö 
.1—I 

CO 
r-l 

-4-3 
CO 
Ö 
o 
CJ 

Tr 
CD 

-4-3 

cö 
• I—I 

CJ 
o 
CO 
CO 
o3 
CD 

r^ 
-+3 

CD 
r-l 

CO 

co -to 

CO 

CO +3 

r^ rH 

CD     ^ 

.s _^> 
CO 
cö 
ri 

CO 

CH     CD 

CD     _£-3 

.<D     "3 

CD 

68 



T3 
03 

-1-3 

Ö 
CD 

faß 

cö 

faß 
Q3 

CO 

<^ 
Q 

^ 

O 

CD 

Ö 
O 

•i-t 

i—i 
o 

cn 

CO 
" -1-3 

O) 
CO 

faß 
Ö 

..—t 

"o 

cS   : 
CO 

co    -ö 
.S     O 
faß  -3 
0)     -+J 

+= O) 

s a 
-+-3 

CO 

Ö 
O 

• H 
•+-3 

3 

Ö 
cö 

§   a 
O) 

O) 

H 

ö o 
o 
0) 

o 
CO      pH 

CO 

O 

+3 
O) 

a 
Ö 
CÖ 

• I—I 

faß 
Ö 
?-t 
faß 
cö 

1-3 

T3 
O 
r-j 

-1-3 
CD 

O) 
o a 
& 

co 
0) 
faß 
ö 
cö 

CO 

Ö 
O 

• l-H 

cö 

er 
CD 

cö 

CO 

Ö 
O 
O 
CP 

0> 
-1-3 
cö 

Ö 
O) 
f-t 

• i—i 

T3 

o 
II 

•o 
+ 
o 

II 
••3- 

co 

-1-3 
cö 
p 
er 

cö 
Ö 

CD 

O) 
j> 
"o 

co 

c<5 

O 
+ 

i i 

rH 

l 

:Cr< 

CO 

X5 
CÖ o 
S-i 

co 
ö 

cö 

o 

i—( 
CD 

co 
^ 

Ö co 
i-H 

CÖ -t3 
+3 QJ 
rQ e 
O • co 

Ö 
o &~ 
+3 ■+0 

<*> 
0) 

-1-3 o 
3 u 

-1-3 ra 
..-H 
-t-3 3 
CO 
^ <U 
3 (-* 
co -4^> 

"# 

69 



to 
CD *—* CO 
CO 
c E 
T3 0 
O 
o 
Ü 

•0 
CD 

■o 
CD "3" £*n 
N .   . c   _ 
"2 
CD 

CO 
0 

st
ra

i 
re

es
 

C c f=   CJ 
CD 0 O   CD 
D) Ü Ü "O 

70 



Ö 
O 
bJO 
cö 

• i-i 

44 
o 
o 

cö 
o 

-t-3 

Ö 
• »-i 

>-> 

o 

o 

-t-3 
f-t 
cö 
PH 

co 
Ö 
O 

• i—i 
+3 
cö 
?! 
0< 
CD 

CD 

+3 

to" 
Ö 
o 

• I—I 
■+^> 

CÖ 
+3 
Ö 
CD 
CO 
CD 
5-t 
PH 
CD 
f-H 

CD 
-f-3 
co 
!>> 
CO 

Ö 
cö 

5-4 

II     II 

^   ^ 

£ 
O 
Ö 

d f *i 
O CD 
I-I 5-t 

-1-3 
CÖ 

CÖ 

5-1 CO 
p CD 
hO > 

q=! • I—I 
+3 

rS- Ö CÖ 
Cri O > 

• I—I 

**3 5-4 
C^ a CD 

II CD 
+3 co 

CG -4-3 
^3 
C^ 

CO 

CD 

• r-l 

Ö 
cö 

T CD ö< 
42 
• i—i Ö 

5-t CD 
CJ 
CO 
CD 

j3 

O H3 
. i—i 

a 
o 
Ö 
o 

o 
-1-3 

+3 
Ö 
CD 

• I-H 

o 
• I—I 

CJ 

Ö 

cö 
Ö 
O 

• i—i 
-+-3 
• i—l 

T3 
CD CJ P Ö 

to 

«4-1 

(-j 
O 
CJ 

CD co -4-3 
O CD 

I—I 

CD 
S3 

CO 
CD 

»r-l 

5-1 

cö 

CO 

CD 
5-4 
CÖ 

o 
a 

p • I-H 

a 
• I-H 

J-l -1-3 CO $3 
0 

• T-4 c£ ' >> 13 
• i—l 

a 
CO 
CD 
CJ 

• i—i 

O 
43 

CJ 

CD 

H-3 

o 
<D 

CÖ 

CD 
CJ 

cö 
5-1 

-t-3 
CO 

Ö 
O 
CJ 

CD 
i-j 

-t-3 

CO 
CD 

-4-3 
CÖ 

Ö 
• r-l 

X5 
5-1 
O 
O 

cö~ 
• 1—1 

> 

CD 

42 
• f-i 

5-1 
CJ 
CO 

"3 
• I-I 

a o 

4> 

"cö 
• i—i 

a o 
Ö 

'o 

-+-3 

Ö 
CD 

• i—i 
CJ 

co 

f-l 

Ö 

Ö 
cö 

"cö 
• f-i 
4-3 

Ö 
CD 
U 

CD 

PS 

CD 
CO 

cö 
o 
CD 

CJ 

CD 

-t-3 

c/T 
• ■—i 

-1-3 
cö 

CD 
f-l 

P 
CO 

• r-l 

"o 
PH 

CJ 
• I-I 

42 
P 
CJ 

PH 

CJ 
• i—i 
+3 
Ö 

• I—1 

P 
er 

CD 

43 
-4-3 
o 

Ö 
cö 

• 1—1 

Ö 
• I-H 

o 
-t-3 

>       +3 
o 
CD 

O 

cö 

CD 

43 
H 

• 
CD 
CO A A A 42 

cd 43 • a, P 
CN H CO co 

-to 

+ 

71 



CO 
CD 
S-i 
i 

O 
-+■= 

i 
4-3 

CO 
CD 
54 

CO 

54 

«2 
CO 
Ö 
O 

Ö 
O 
cj 

X5 
Ö 
CD 

CD 
42 
• 1-4 

54 
CJ 
CO 
CD 
54 
CU 

CD 

4-3 

Ö 

CO 
Ö 
O 

• i—i 
4-3 

CO 

CD 

CO 
o 

CD 

+3 
Ü 
CD 

•'—3 

CO 

54 
CD 
> 
CD 

Ö 

a 

o Ö 
• I—1 

CO o 
• 1—t 

54 4-3 
42 CO 

CD 5-1 
bß CD 

"cö O 
«4-1 o o CJ 

+3 
CD £ 
CO CO 

CO 'cS 
CD 

a o 
4-3 

o 
o 
CD 

42 

cj 
—H 
M 
CO CD 

co XJ H3 
Ö 
O 

• i—i 2 
• i—i 

O 
> 

4-3 ^d cö o CD 

a 54 

CO 

CD 
5-1 
cö «+-4 • 1—1 

o r^H CO 

CO 

Ö 

4-3 

4-3 
• I—1 

CD 
o 
54 

O C3 o 
• 1—1 «+-4 4-= 

CO 
"EH 

CD 

CD 

4-3 

2 
CD 54 

TJ CO 
4-3 

CO 
CO 'o "S3~ Ö 
O 5-1 

4-3 

Ö 

CO o 
u CO 

Ö 
o 
o 

3 
40 "hß o 

.1—1 

CD <-j 
CJ 

• i—i 

43 
CD 

43 44 Ö 
4-3 S~ 54 2 ^ o <U o «£H 

CO .   0, Ö ?> 

o o 
• 1—1 

O 
-d 

o 
CO 

+3 
cö 

0 
CD 

• 1—1 

a 
CD 

4-3 
CO 

^ 4-3 
CO 
54 o 

U *^ 

43 
4-3 

CD 
bß 
54 

CD 

o 
Q) • i—l >> 

CO 4^ o 
CD 

Ö bß 
CO CD 

4-3 

4-3 
CO CD 

CD Ö 
• i—t 

O 

O 
• i—i 

43 
4-3 

43 
4-3 

4-3 
CO 
3 

CD 
O 
Ö 

43 
Ü 

CD 

. I—1 

PS « CD 
• i—i 

in 3 
CO a 

• 1—I 

CM 

A A • 1—1 

El 

CM 

+ 
--3 
0> 

~0 

CM 

^ 

O 
4-3 

4-3 
CJ 
CD 

42' 

CO 

54 
CO 
CO 
CO 
CD 
CJ 
CD 
Ö 

CD 
43 
4-3 

o 
4-3 

CO 

cc3 
CD 

CD 

54 
CD 

• I—I 

7^ 
• 1—1 

43 

a 
CD 

e 
cö 
54 
bJO 

J5 
CD 
<-} 

4^> 

<1 

4-3 
CO 
<-j 

4-3 

hJO 
Ö 

• 1—I 
CO 

72 



a : Payload Attitude 

1 2 3 
Time (Seconds) 

b : Left Shoulder 

1 2 3 
Time (Seconds) 

2 
C Left Elbow 

1 
/T^"S. 

£   0 a 

"5 \                             / 

/f 

hybrid 

1 2 3 
Time (Seconds) 

73 



< 

OH 
a. 

^     CL, 

CO 

Ö 
O 

HZ5 
Ö 
O 
O 

Ü 
CO 
& 

ft 
Q) 

-P 
cd 

-p 
CD 

3 
a 

• l-H 

Ö 

bJD 
Ö 

♦i-t 

u 
CO 

O 
Ö 

*H 

eg 

Co 
CO 

0) 

• r-l 
■+-5 

• i-H 
r-l 
03 

03 

CO 

•!-t 

Ö 
cö 

Ö 
o 

• I—t 

o 
Ö 

> 
o 
Ö 

OH 
CO 

"bJ0 
Ö 

• >—i 

o 
CO 

03 

-+J 

03 

• r-l 
CO 

Ö 
o 
Ü 

<o 

ft, 

<o 
-I ICQ 

+ 
a. 

<0 
. a, 

^ a. 
<o 

-I  I CM 

II 

a, 

<0 

+ 
to 

^ a, 
<o 

•k 

i— i 

L a, 
<iU 

<-o 

+ 
ft, 

Cr< 
to 

<M 
tV 

1 1 
ft, 

• c^ 
«o 

t—1 

iy ^ 

CO 1 
• I-H 5^_ 

o s 
V ft. 

•£> i     .J 

• 1—1 
* a, 

CO 
|| -4-3 

o 
03 

3 
CO 
03 *~ J-i 

f- 
a. M 

1 
• r-H 

a. £ 
C^ 3 
II 

o a, 
Cr< 03 

<o 
• r-l 

03 o 
J-i _ (-{ 
03 Ü 

£ «! 

74 



CD 

CO ■+J 

CO Ö 
CD 

>> a 
1—* CD 

CO T—t 

CD OH 
• 1—1 a 

OH 

en 
cö 

£? 
"cö 

o 
0) 

o 
co 

CD 

42 

3 

CD 

cö 
S-t 

CO 
cö 
CD 

+3 
CD 
CD 
J-i 

•F-( 

TJ 
-t-3 
O 
Ö 

cö 
43 
O 

OH 

A 

O 
CO 

u 
O 
S-i 

H 

PH 

O 

bJO 
Ö 

•i-i 

ü 
CO 

u 
Ö 
CD 
U 

CD 

CO 

CO 

cö 
CD 
?-H 

!>> 
faO 
s-i 
CD 
Ö 
CD 

.r-i 

CD 
Ö 

CD CD 
+3 -w> 

CD CO 
Ö >> 

CO 
CO 

*■* CD 
CD 43 
^ H 

. a, 

•C3H 
-1 |<N 

+ 

•cn 
-i |CN 

h 

co 
"cö 

CD 
> 
CD 

CD 
i——i 

OH 
• i—I 

CD 
Ö 

• i—i 
J-H 
OH 

CD 

CO 

!>> 
bX) u 
CD 
Ö 

i 
44 

CD 

H 
CM 

3 

3 
cq 

■EH 

o 
-t-= 

Ö 
o 
CD 

J-4 
O 

CD 

■4-= 
0 
OH 

o 
CD 
r-i 

CO 

CO 
CD 
h€ 
bO 

co 
CO 

H 

co 

CN 

cq 

<^J 

cq 

75 



Ö 
• i—I 

CO 

CD 

CO 

co 

s-4 

CO 
CD 

• i—i 

l> 
o 
u 
OH 

'o 
-<-3 

PS 
o 
o 
CD 

A 

Ö 
.1—1 

hO 
• i—i u o 

. <U 

+■= 

Pi 
CO 

f-l 
CD 

O 

CO 
5-H 
O 
o 
CO 

+3 
-4-3 

CO 

CO 

JO 

13 

CO 

O 
-4-3 

Ö 
o 
o 
CO 

CO 

CD 
• i-i 

CD 
U 

CO 
CD 
Pi 
a4 

• i-i 

ö 
^ 

CD 
CD 

-+J 

hO 
. Ö M • i—i 

CD CO 
Pi 

'o CD 
S-i co 

+3 , 1 
Pi CD 
o > o o 
^ Pi 

cö Pi 
• i—i 

T5 > 
CD 

«4-1 

i—i 

O 
> 

-4-3 Pi 
• 1—4 

P! 

CD 
3 • 

r& 

o CO 

Pi 
-t-3 

CO 

CD O CD 
^ • I-I 

-1-3 
+3 

-t-3 CO "03 
-t-3 

Pi 
tf-l 
o tsi 

• 1—4 

f-l 

Pi 
o 

CD 
-t-3 

CD 

CD 

a • 1—1 

-4-3 
cö cö 

.I—I 
$-4 
CD 

hO a 
H-3 cö X 

CO CU CD 
CD 
> ^3 Pi 
Pi •+-3 CO 

. •—4 CO 
t-i a On 
CD O 
^ £-1 

CD "CD 
-4-3 

rTj > 

£ -4-3 
o 

CD 
-a 

^ 
CM co 

If 



o 
CTJ 

00 

o 
CO 

oo T CM T- 

,_ -i- CM CO "* CO if! co co co co 
SZ CM CM *-• •*-» +? *z 
Q.    ' .   0)   <D   CD   <D 
CO   X •^sz SZ SZ SZ 

<T~> 

cm 

CM 
is. °> «D CD 
CO CD Tf O) 
I-COCOT 

al
ph

a:
 

x:
-.

2 

T- CM CO "fr 
co co co co 
0 0 0 0) 

SZ SZ SZ SZ 

11 



a:Thetal Profile b : Theta2 Profile 

2 4 6 
Time (Seconds) 

24 6 
Time (Seconds) 

c : Theta3 Profile d : Theta4 Profile 

100 

80- 

a  60 

40 

20 

 r-  , T 

 . track 

■ 

\ 

—- ref 

- ^s- 

• 
2 4 6 

Time (Seconds) 

-150 

-160 

-170 

ä-180 
Q 

-190 

-200 

-210 

 1   1 1  

~   A  track 

\ ■ 

\ 

— ref 

2 4 6 
Time (Seconds) 

e: Payload Profile f: Payload Profile 

2 4 6 
Time (Seconds) 

i?   0.2 

2 4 6 
Time (Seconds) 

78 



a : Left Arm Controls b : Right Arm Controls 
6 

4 u4 ■ 

£   2 

i // 

\ 

V 
// 

// 

If 
\     u3 

2  0 
u 
2 

-2 

\\ 

// 

-4 •   ^ 

2 4 6 
Time (Seconds) 

2 4 6 
Time (Seconds) 

c : Left Constraint Forces d : Right Constraint Forces 

2 4 6 
Time (Seconds) 

2 4 6 
Time (Seconds) 

e : Left Arm Controls f -. Right Arm Controls 

2 4 6 
Time (Seconds) 

2 4 6 
Time (Seconds) 

79 



ä MMAA 

AlAA-94-3754 

Linear Quadratic Regulator Problem With 
Inequality Control Constraints for 
Flexible Space Structures 

S. Lee and J. Junkins 
Texas A&M University 
College Station, Texas 

A1AA/AAS Astrodynamics 
Conference 

August 1-3, 1994 / Scottsdale, AZ 
For permission to oopy or republish, conlaot the American Institute of Aeronautics and Astronautics 

370 L'Enfant Promenade, S.W., Washington, D.C. 20024 

80 



LINEAR QUADRATIC REGULATOR PROBLEM 
WITH INEQUALITY CONTROL CONSTRAINTS 

FOR FLEXIBLE SPACE STRUCTURES 

AIAA-94-3754-CP 

Sangchul Lee* and John L. Junkins' 
Texas A&M University .College Station, TX 77843 

Abstract 

We consider the simultaneous slewing and vibration 
suppression control problem of an idealized structural 
model which has a rigid hub with two cantilevered flexi- 
ble appendages and finite tip masses. The finite element 
method(FEM) is used to obtain linear finite dimen- 
sional equations of motion for the model. In the linear 
quadratic regulator(LQR) problem, a simple method is 
introduced to provide a physically meaningful perfor- 
mance index for space structure models. This method 
gives us a mathematically minor but physically impor- 
tant modification of the usual energy type performance 
index.   A numerical procedure to solve a time-variant 
LOP. problem with inequality control constraints is pre- 
sented using the method of particular solutions. 

Introduction 

The problem of simultaneous slewing and vibration 
suppression of large flexible space structures has been 
the focus of intense research1"4.    Since Large Space 
Structures(LSS) are mechanically flexible systems, they 
are most generally described as hybrid coordinate dy- 
namical systems. Their motion is described by a cou- 
pled system of ordinary and partial differential equa- 
tions. The corresponding nonlinear integro-differential 
equation of motion are usually linearized, discretized in 
space, and truncated to a finite number of modes. The 
assumed mode method and the FEM are widely used 
for obtaining discretized linear equation of motion for 

large flexible structures. 
Several approaches to associated control of LSS have 

been investigated. The linear quadratic regulator and 
associated tracking problems have been treated success- 
fully and represent an important class of optimal con- 
trol application5. In the LQR problem, the choice of 
performance index  is very important and problem de- 

* Graduate Student, Department of Aerospace Engi- 

neering. Student Member AIAA. 
t Eppright Chair Professor, Department of Aerospace 

Engineering. Fellow AIAA and AAS. 

Copyright ©1994 by John L. Junkins. Published by the 
American Institute of Aeronautics ans Astronautics, 

Inc. with permission. 

pendent task. Usually LQR problems are considered 
without any bounds for states and controls. If there are 
inequality constraints on the controls, however, then 
Pontryagin's minimum principle could be applied to 
find the necessary conditions for optimality. Unfor- 
tunately, the resulting equations from the optimality 
conditions give us nonlinear differential equations even 
though the original system of equations is linear6. For 
this reason, we can not determine controls analytically. 
Rather, we must attempt to find the solutions by an 

iterative numerical procedure. 
In this paper, we consider the simultaneous slewing 

and vibration suppression control problem of a rigid hub 
with two cantilevered flexible appendages which have fi- 
nite tip masses. The FEM is used to obtain linear finite 
dimensional equations of motion for the flexible space 
structure model. We introduce a simple method which 
provides a physically meaningful performance index for 
space structure models. This method gives us a mathe- 
matically minor but physically important modification 
of the usual energy type performance index. A numer- 
ical procedure to solve a time-variant LQR problem 
with inequality control constraints is presented using 
the method of particular solutions7-8. We also present 
simulated results to explore the utility of this method. 

Finite Element Modeling 

Using the FEM, the partial differential equations 
of the  motion are  transformed into an approximate 
set of second-order differential equations in terms of 
the displacements, velocities, and accelerations of the 
finite  element coordinates,  and the  external forcing 
functions.     With  reference  to Fig.l,   we consider a 
rigid hub  with two cantilevered flexible appendages 
which  have finite  tip  masses.     Table  1  summarizes 
the configuration parameters of this flexible structure. 
The appendage is considered to be a uniform flexible 
beam and we make the Euler-Bernoulli assumptions of 
negligible shear deformation and negligible distributed 
rotatory inertia.   The beam is cantilevered rigidly to 
the hub.   Motion is restricted to the horizontal plane 
and we neglect the velocity component -y6, that is 
perpendicular to the y direction. Several finite element 
models  for  a flexible  arm  are  presented  in   Refs.[9] 
and [10].   In this section, we present a finite element 
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model for the model by using the extended Hamilton s 
principle that provides a variational weak form for 
the finite element model. It is significant to note 
that we introduce the finite element approximations 
in such a way (co-rotational coordinates) that large 
hub rotations are admitted; the FEM represents small 
elastic displacements with respect to hub-fixed axis. 

Specifically, the following cubic functions are 
adopted as the shape functions for the i-th finite 

element12 

Fig-1 A five-body hybrid coordinate system 

Table 1   Configuration Parameters 

PARAMETER SYMBOL VALUE 

Hub radius 

Rotary inertia of hub 

Mass density of beam 

Elastic modulus of beam 

Beam length 

Moment of inertia of beam 

Tip mass 

Rotary inertia of tip mass 

r 

JH 

P 

E 

L 

I 

mt 

Jt 

lft 

8 slug-ft2 

0.0271875 slug/ft 

0.1584 xlO10 lb/ft2 

4.0 ft 

0.4709503xl0-7 ft4 

0.156941 slug 

0.0018 slug-ft2 

V>! = 1 - 3x? + 2x?,        V>2 = h*i - 2hil + hi^ 

^3 = 3x2-2x?, ^ = -hx2
l+hx^ 

£i = (x - Xi)/h 

(3) 

where x, is the distance from the root of the appendage 
to the left end of the i-th finite element, and h is 
the length of the finite element. These are the most 
commonly used shape functions for one-dimensional 

beam elements. 
As a consequence of the space/time separation implicit 
in Eq.(2), the acceleration and curvature are expressed 

as follows: 

The application of the extended Hamilton's principle 

yields 
f\sT-SV + 6Wnc)dl = 0 

Jti 
86 — Sy - 0    at   i = t\M 

(1) 

The displacement y{x,i) can be discretized using a 

finite element expansion11'12 

y(x,i) = E^)wl/-0(i) (2) 

where i/|€),^e) (4°,^°) are transverse deflection and 
rotation at the left (right) end of the element, and 

■4>{e){x) are the Hermite cubic polynomial shape func- 
tions, defined over the local element, which satisfy the 

conditions for admissibility. 

y(«,t) = E*i,,^t)W 
j=i 

d2y 

t:=l 

(4) 

After some algebra, the assembled matrix differen- 

tial equation is as follows: 

Jh + 2Mee    2M« 
1MvB        2M, :] ii) + 0       0 

0    2KVV 

1    2 
0    0 

0    2. 

{u} w 

where u is the coordinate which consists of the trans- 
verse deflections and rotations at each node of the ap- 
pendage, and we assume symmetric deformations of the 
appendages. The matrix elements of Eq.(5) are pre- 
sented in Ref.[13]. The control system is assumed to 
generate a torque u acting upon the hub and a torque 

•utip acting upon the tip mass. 

LQR with Inequality Control Constraints 

We introduce a method to find a physically mean- 
ingful performance index. First Eq.(5) can be written 
in a linear second order matrix form as follows: 

Mx + Kx = 

-1    V 
0    0 

.0    2. 

I utip J 
where   x U) 

(6) 

Modal coordinates are used to design the controller. 
To   perform   the   modal  coordinate   transformation    , 
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the following open-loop eigenvalue problem should be 

solved first 

where 

-.1 (?) 

(8) 

Ki  - XiM<f>. i= 1,2, • 
—» —* 

with the normalization equation 

4>TM<L = l * = 1>V 

We introduce the modal matrix 

* = &.£.-.£.] <9> 
The general modal coordinate transformation is then 

x(t) = #ij(t) (10) 

where 7j(t) is the n x 1 vector of modal coordinates. 

The transformed equation of motion becomes 

Mfi + Kt] - Du (11) 

wher« 

K - $TK$ - diag(0,u\,ul,- ■ ■ ,ul_i) 

"1    2" 

i> = $T o   o 

0    2 

Note that diagonal zero in K corresponds to the rigid 
body mode. For control applications the system dy- 
namics are usually modeled as first order state space 
differential equations. We introduce the "2n" dimen- 
sional modal state vector z = {17 TJ}

T
, then Eq.(ll) can 

be written as the first order system 

z = Az + B\i (12) 

where 

.4 
_   f     0 In 
~ [-K     0 

J5 = 

Now the kinetic energy and potential energy are as 

follows: . 
T=-kTMk,    V = ±xTKx (13) 

2 ^ 

Usually we include the position feedback control- 
induced potential energy term \ ke6

2 since we expect 
the control to drive 6 to zero. We introduce a new 
weighting matrix Q in the performance index J as 

follows: 

J = I  f '(alx
TAfx + a2x

Ttfx + M2 + uTßu)dt 
2 Jo 

= 1 [t\zTQz + urRu)dt 

2J° (14) 

n      \a2*
TK*        0    1 K -\ke        °    1 

<?=[       0 ajn\   ' K-[0     2K„\ 

Note that the usual energy type performance index 

adopts diag(q,wl"h--->»l-i) instead of **K* " 
the upper left submatrix of Q. 

We assume that the control is constrained in mag- 

nitude by the relation 

MOI < 1 j= 1,2, ■••,m (15) 

Note that the B matrix of Eq.(12) and the R matrix 
of Eq.(14) can be defined to obsorb the normalization 

Uj to allow the normalized magnitude of Uj(t) to 
have a unity saturation limit, without restriction. 

The Pontryagin's minimum principle consists of the 
state and costate equations and the optimality condi- 

tion as follows: 

z" = Az' + flu- 

p" = -Qzm - ATp' 

H(z-,u,p-,t) < H(z-,u,p*,l)   for all admissible u 
(16) 

where H is the Hamiltonian function. 
The solution of the open-loop problem which rep- 

resented by Eqs.(12,14,15) must satisfy the following 
nonlinear two point boundary value problem(TPBVP) 
derived from Pontryagin's minimum principle6. The 
detail proof of Eq.(17) is in the Appendix. 

i' =Az'-BSAT(R-lBTp') 

p- = -Qz' - ATpm 
(17) 

where p is the costate vector and satfa) is defined that 

sat{yi) = yi if \Vi\ < 1 and sat(Vi) = s9n(Vi)_ if 

|y,| > 1, and SAT() is a similar vector valued function. 
When the initial condition of z'(t) and the terminal 

condition of p'(t) are assigned as z'(0) = z0 and 
p-(^) = hz'{tf), the method of particular solutions 
associated with a quasi-linearization method gives us 

the open loop optimal solution. 

Method of Particular Solutions 

A general technique for solving nonlinear TPBVPs 
was presented in [7,8]. The method of particular solu- 
tions and an associated quasi-linearization method are 
summarized and then applied to LQR problems with 

inequality control constraints. 
First consider the linear differential system 

v = F(t)v + D(t) 0<t<tt 
(18) 
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with the boundary conditions 

v<(0) = a; t = 1,2,--.n 

Cv(tj)=ß 

(19) 

(20) 

where C is a known n x 2n matrix and ß is a known 

constant vector. 
Let v'(()(j = l,21---ln+l) denote n+1 particular 

solutions obtained by forward numerical solution of 
Eq.(18) with the following n+1 sets of initial conditions; 

vf'(0) = «i i=l,2,--,n    j - l,2,---,n+l 

fc=l,2,---,n    j= 1,2, -,n+l 

(21) 
where fyt is the kronecker delta. 

Due to the linear property of Eq.(18), we can com- 
bine the n+l particular solutions to obtain another 

solution 
n + t 

(22) v(0 = 5>v>W 
J'=i 

Th* unknown coefRcients fc/s are determined in 

such a fashion that the solution v(t) satisfies the bound- 
ary conditions of Eq.(21). From the initial and terminal 
conditions, we obtain the following equations. 

n + l 

£*> = * 
(23) 

Equation (23) constitutes n+l equations which can 
be solved to determine the n + 1 fcy's. The solution is 
then obtained by recombining the individual particular 
solutions according to Eq.(22). 

Second, consider the nonlinear differential system 

v = /(v,i) 0 < t < */ 

with the boundary conditions 

v;(0) =a{ t= l,2,---,n 

*(v(«/)) = 0 

(24) 

(25) 

(26) 

Equation (24) is linearized about a nominal solution 
vn(i). The linearized equations are given by 

vn + Av = /(vn,r.) + 
df 
dv »(0J 

Av (27) 

where  Av are corrections to  the  nominal solutions. 
Eq.(27) is rewritten as follows 

Av = dj_ 
dv »(0 

Av + {/(vn,t)-vn} (28) 

If v„(() is selected such that the initial conditions of 
Eq.(25) are satisfied exactly but the terminal conditions 

of Eq.(26) are satisfied only approximately, then the 
boundary conditions are as follows: 

Avi(0) = 0 

d<2 

i= 1,2.- 

dv 
lAv(t/) = -*(vn(t/)) 

(29) 

Then, Eqs.(28) and (29) constitute a linear differential 
system and can be solved by the method of particular 
solutions. In order to avoid numerical differentiation 
vn in Eq.(28), we can rewrite Eqs.(28) and (29) using 
v = vn + Av as follows: 

df 
dv v»(t)J 

with boundary conditions 

»♦{«"••"-[KLJ"-}™ 

Vi(0) = a,- 

v-(t/) 

V{tj) = 

i= l,2.---,n 

a* 
av 

v.(t/) 

v„(t/)-*(v„(«/)) 

(31) 

The  solution  v(i)   becomes  a  new  nominal  solution 

v»(t). 
Now, we consider the nonlinear TPBVP of Eq.(17) 

with boundary conditions. Let 

-{?} 
Then 

v;(0) = z0i i= 1,2, •■ 

[-h    In]v{t,) = 0 

,n 
(32) 

To obtain the linearized differential equation,  we 

need [§£|v„(t)] of E<l-(30)- For the case of the LQR 

problem with inequality control constraints, [g^lv„(t)] 
can be obtained easily by the following procedure. 

By the presence of SAT function in Eq.(17), first we 
evaluate the mxl vector i?-lBTp". If |(Ä_lßTp*);| < 
1 for all j = 1, 2, • - •, m, then the nonlinearity of Eq.(17) 

disappears, so obviously 

a/ 
dv v-(0 

A     -BR~lBT 

-Q -AT 

If there are j's such that \(R-lBTp')j\ > 1, then we 
define a m x n matrix Y. This matrix is basically 
R~lBT but each j-th. row is replaced by a zero row 
vector when j is the index such that \{R~lBTp")j\ > 1- 

Then, 

df 
dv »(')-> 

A     -BY 
-Q    -AT 

(33) 

Substituting Eq.(33) into Eq.(30) gives us a linearized 

differential equation. 
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Simulated_Results 

We consider the previous flexible structure with 
reference to Fig.l and use the configuration parameters 
as shown Table 1. The discretized equations of motion 
are presented in Eq.(5). Here we use 3 finite elements 
and time interval (0 < t < 1) with initial conditions 
0(0) = 0.2 rad and y(x, 0) = 0 for all x. We use 1 for 

ttl and a2) 100 for ke, diag(b, 50) for Ä of Eq.(M). We 
assume that the controls are constrained in magnitude 

as follows: 

M0! < °-4     and   M'pW' - 0015 

Figures 2-5 show 0(0, ytip{t), u{t), and utip{t) for 
both cases (constrained control case and unconstrained 
control case). The first four state and costate histories 
of the constrained control case are shown in Figs.6 and 
7 respectively. Figure 7 shows that the costates satisfy 

the terminal condition p'{tj) = 0. 
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Fig.4 Torque acting on hub   u(t) 
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Fig-3 Tip deflection   y£l>(0 

Fig.5 Torque applied at tip mass   v,tip(t) 

Summary and Conclusion 

The present paper introduces a simple method which 
provides a physically meaningful performance index for 
space structure models in  the LQR problem.    This 
method gives us a reasonable modification of the usual 
energy type performance index.    A numerical proce- 
dure is presented to obtain open loop solution of the 
time-variant LQR problem with inequality control con- 
straints, using the method of particular solutions incor- 
porated with a quasi-linearization technique. This ap- 
proach does explicitly consider control saturation con- 
straints  and therefore  represents  a generalization of 
the standard(unbounded) control assumptions for LQR 
problems. Numerical results are presented which shows 
the utility of the method,  using the idealized struc- 
tural model which has a rigid hub with two flexible 

appendages and finite tip masses. 
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The LQR problem of Eqs.(12,14,15) can be written 
as the nonlinear TPBVP of Eq.(17) using the Pontrya- 

gin's minimum principle. 
Pontryagin's minimum principle: 

z*=Az' + Bu* {Al) 

p- = -Qz' - AV (^2) 

H(z',u',p',t) < H{z',u,p',t)   for all admissible u 

(A3) 

where If is the Hamiltonian function. 

FromEq.(A3) I(u-,/?u-) + (ßu-,p-)   <   §(u,Äu) + 

(Du, p")  hold for all u such that  \v.j(t)\   <   I    j  - 

l,2,---,m. 
Let us define w* as w" = R   1BTp*, then 

I(u-,Bu-) + (u',Äw-)   <   i(u,Äu) + {u,fiw-) 
2 '■ 

Now we add i{w", RW) to both sides, 

i(u\ Ru) + (u-, Aw") + -(w-, Äw*) 

<   I(u,fiu) + (u,Äw-)+.-(w\Äw*) 

((u"+w*),Ä(u-+w'))  <  ((u+w-),Ä(u+w*))  (A4) 

for all u such that \UJ\ < 1 where j = 1, 2, • • •, m. 
Equation (A4) implies that u) = -tu' if \w*j\ < 1 and 
u'j - -sgn{w'} if \u]j\ > 1. 

To prove above statement, we proceed as follows: 

a = u + w" 

Equation (A4) implies that the function ^(u) = (a, Äa) 
attains its minimum at a* = u* + w". 
Since R is positive definite, the eigenvalues of R are 

positive for all t. 
Let D be the diagonal matrix of the eigenvalues. D = 
PT RP where P is an orthogonal matrix. 

^(u) = (a,fia) = (a,PDPTa) 

= (PTa, DPTa) = (b, Db) 

= !>*? 
>=i 

where b = PTa. 
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Since P and PT are both orthogonal, (b,b) = (a, a) 
equivalently 

£*$ = £«? 
Now we establish the relations 

min^i(u) = min(a, Ra) 

(A5) 

=    min   y^d, 6y = Y)d/ min 6} 
b = PTB 

(A6) 

i=i >=i 

Equation (A6) implies that if a* minimizes (a, Ra), 
then the components b\,b'2l-■ • ,b'm also minimize the 
scalar product (b,b) where b = PTa. 

In view of Eq.(A5), we may conclude that the vector 
PP

T
B~ = a* minimizes the scalar product (a,a). 

Therefore, if (a*, Ra') < (a, Ra) then (a', a") < (a, a). 

We can reverse our reasoning as follows: 
If {a*, a') < (a, a)   then (a', Ra') < (a,Ra). 

We know that 

m 

(a, a) = ((u + w*), (u + w')) = £)(«> + w')2. 

T71 

We can deduce that     min(a,a) = V"  min (uj + w*)2. 

To minimize the positive quantity (UJ +w')2, one must 

set 

Uj — —w' whenever \uij\ < 1 

UJ — +1 whenever w~ < — 1 

uj — — 1 whenever u>;" > 1 ■ 
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Introduction 
IN the recent literature, an asymptotic stability theorem1 for 

autonomous and periodic nonautonomous systems was 
used to prove the global asymptotic stability of the mass- 
spring-damper system and the damped Mathieu system. For 
such systems, the application of LaSalle's invariant set theo- 
rem3 has been the conventional approach adopted to prove the 
global asymptotic stability. When the derivative of the Lya- 
punov function2 vanishes, LaSalle's theorem3 requires us to 
show that the maximum invariant set of the system consists 
only of the equilibrium point at its entry. Although it is always 
simple to identify the set of points Q where the derivative of 
the Lyapunov function vanishes, the maximum invariant set 
ICQ is not always easy to identify. The main challenge of 

Received Aug. 15, 1992; revision received Jan. 4, 1993; accepted 
for publication Jan. 5, 1993. Copyright © 1993 by R. Mukherjee and 
J. L. Junkins. Published by the American Institute of Aeronautics and 
Astronautics. Inc., with permission. 

'Assistant Professor, Mechanical Engineering Department. 
tGeorge J. Eppright Professor, Aerospace Engineering Depart- 

ment. Fellow A1AA. 

LaSalle's theorem3 is therefore to sort out the maximum in- 
variant set. For a distributed parameter system the dynamics 
are described by a hybrid set of ordinary and partial differen- 
tial equations. For such a system, the sorting out of the maxi- 
mum invariant set is not a trivial task. In such a situation it is 
useful to apply the theorem in Ref. 1 so as to comment on the 
asymptotic stability of the system. 

The distributed parameter system consisting of a rigid hub 
with one or more cantilevered flexible appendages has ap- 
peared in the technical literature quite frequently (see Refs. 4, 
5, 6, and 7). The system described in Fig. 1 consists of four 
appendages that are identical uniform beams conforming to 
the Euler-Bernoulli assumptions. Each beam cantilevered 
rigidly to the hub is assumed to have a tip mass. The motion 
of the system is confined to the horizontal plane and the con- 
trol torque is generated by a single-reaction wheel actuator. 
Under the assumption that the system undergoes antisymmet- 
ric motion with deformation in unison (see Fig. 2), a class of 
rest-to-rest maneuvers was considered in Ref. 4. For the partic- 
ular Lyapunov function considered, the best choice of the 
control input only guaranteed the negative semidefiniteness of 
the derivative of the Lyapunov function. To conclude the 
global asymptotic stability using LaSalle's theorem, it would 
be necessary to formally prove that the maximum invariant set 
consists only of the equilibrium point. The global asymptotic 
stability of the system was claimed in Ref. 4 in the absence of 
this proof. 

In this Note we consider the hub-appendage problem4 with 
modifications. The modeling and successful control of such a 
system is expected to provide us with insight into the modeling 
and control of a general class of distributed parameter sys- 
tems. Using a Lyapunov function approach and the asymp- 
totic stability theorem in Ref. 1, we prove that global asymp- 
totic stability of the system is guaranteed provided the system 
undergoes antisymmetric motion with deformation in unison. 

90 



1192 J. GUIDANCE, VOL. 16. NO. 6:    ENGINEERING NOTES 

In other situations, such as symmetric motion with deforma- 
tion in opposition (see Fig. 2), such a conclusion cannot be 
drawn. 

Theorem on Asymptotic Stability 
Consider the nonautonomous system 

= /(('.*(')) (1) 

where/:/?» x£> — R" is a smooth vector field onR,xfl, D 
CR" in the neighborhood of the origin x = 0. Let x =0 be an 
equilibrium point for the system described by Eq. (1). We now 
state the theorem on asymptotic stability.1 

Theorem. 1) A necessary condition for stable nonau- 
tonomous systems: Let V(t,x): R+XD-R+ be locally posi- 
tive definite and analytic on R+ xD, such that 

V(t,x)\ 17 +{Vx) fV.x) 

is locally negative semidefinite. Then whenever an odd deriv- 
ative of V vanishes, the next derivative necessarily vanishes 
and the second next derivative is necessarily negative semi- 
definite. 2) A sufficient condition for asymptotically stable 
autonomous systems: Let V(x) :D-R. be locally positive 
definite and analytic on D, such that V<Q. If there exists a 
positive integer k such that 

V<:t-"{x)<0 

K<'V) = 0 

vx ^0: V(x)- 

for /=2, 3,.. 

0 

,2k 
(2) 

where K
(
*'(JC) denotes the (*)th time derivative of V with re- 

spect to time, then the system is asymptotically stable. How- 
ever, if VU)(x)=0, v/= 1, 2,...,oo, then the sufficient condi- 
tion for the autonomous system to be asymptotically stable is 
that the set 

S = [x : f(-"(x) = 0,    Vy = l,2,...,oo] 

contains only the trivial trajectory x = 0. 

Hub-Appendage Problem 
This example is taken from Ref. 4 with some modifications. 

The hybrid system of ordinary and partial differential equa- 
tions governing the dynamics of the system, which has already 
been described in the introduction, is 

-(Mio-rSio)-- 

df« 

px 

;=i 
(3) 

fiy,     d2e\ ,,   dJfl    d2y, 

i = l,2, 3, 4       (4) 

fd2y      d2<A        a*y, 
i = 1, 2, 3, 4 (5) 

The boundary conditions on Eqs. (3-5) are 

0,           » = 1,2,3,4 (6) 

:0,           1 = 1,2,3,4 (7) 

/ = 1,2,3,4 (8) 

ay, 

dx 

dx> 

ay,- 
3.v3 , ~ £/\ d/2+ dt2 

y(x.l) | "V deformed 
3 configuration 

i 
undeformed 
configuration 

i-th appendage 

Notation of forces and moments 

Fig. 1    Distributed parameter autonomous system consisting of a 
rigid hub with four cantilevered flexible appendages. 

y,(M> 

y.(x.t) 

i—>- v-» 

Fig. 2 Antisymmetric and symmetric motion of the system consist- 
ing of a rigid hub and four flexible appendages: A is the antisymmetric 
motion (deformation in unison),)'i(x, t) = yi(x, t)=yj(x, t)=yt(x, 
t) and B is the symmetric motion (deformation in opposition), y\(x, t) 
= -yi(x,t), yi(x,t)=-y*(x,t). 

The state of the system is described by a hybrid set of dis- 
crete and continuous variables: 

i,e,yi(.x,t),---,y*(x,t), 
dy>(x,t) 

dt 

dyt(x, t) 
dt 

(9) 

We choose the Lyapunov function V as 

K = ^/hube
2 + ^(e-e/)

2 + ^E 
2 2 Z i=i 

■!X20'*"KD 
XS■-)' dx 

(10) 

to derive control laws that will drive the system to its desired 
state Zd«i,ed = (0/. 0,0 0,0,...,0). In Eq. (10), a,, a2, and 
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a, are positive constants. It can be shown4 that the choice of 
u(t) as 

«= -(I/o,) fl2(Ö-e/) + o4ö + (a3-ö'l) E (rSio-Mm) 

at>0 (ID 

in Eq. (3), leads to V= -aifi2. Clearly, V'\% negative semidef- 
inite and is equal to zero if 0 = 0. To check for the asymptotic 
stability of the system using the theorem in Ref. 1, we first 
compute the higher-order derivatives of V. We find that when 
V=0, the following always holds 

[/(2*-D= _2*fl4[0<**l>]2,    K<" = 0,    i'=l,2 2k    (12) 

for some positive integer k. In Eq. (12), P,(*' denotes the (*)th 
time derivative of V, and 0'*1 denotes the (*)th time derivative 
of 0. Using Eq. (12) and the sufficient conditions of the asymp- 
totic stability theorem,1 we conclude that the system is globally 
asymptotically stable if 0(tVO for any positive integer k. In 
other words, if ^=0 at some time / = T, then the system will 
be globally asymptotically stable if 0 is not a constant for all 
/ > 7", and is a constant only at the equilibrium point. 

We now investigate the case where 6 is a constant at a point 
other than at the equilibrium point where Z^Zd. Let this 
constant be 0C. Then Eqs. (3-5) simplify to 

u - E (rS/o-M/o) 
;=i 

■0 

-0W,o-/-S,o) = 

d2yt 

px —- cLv + ml —- 
dr- di- 

d>y, 
p!?+EI-3x< 0, 1, 2, 3, 4 

(13) 

1,2,3, 4 
(14) 

(15) 

The boundary conditions given by Eqs. (6) and (7) remain 
unchanged, but the boundary condition given by Eq. (8) sim- 
plifies to 

3^ 
a*3 

m a2?, 
T/Ü? i = 1, 2, 3, 4 (16) 

Also, the input to the system u(t) defined by Eq. (11) can be 
simplified, using Eq. (13), to 

ai ±r = u = E (rSio-Mn) = - {Bf-6C) = C 

If we define V = E >/. then EQ- U7) implies 
i=l 

const (17) 

d3Y    d2Y C 
p  = — = const 

L   3A:3     3X2J x-r         El 
(18) 

If we make the reasonable assumption that Y(x, t) is of the 
form Y(x, t) = F(x)G(t). then Eq. (18) leads to 

GO) 
33F    d2F 

dx1 ~ dx2 = const (19) 

Equation (19) implies that GO) is a constant. Summing Eqs. 
(15) and (16) over /' = 1 to / = 4, we have 

32Y    „ a4r 

$Y 

a*3 
m a2r 
£/ a/2 

(20) 

(21) 

Because K(x, 0 = f (^)G(/), and GO) is a constant, Eqs. (20) 
and (21) imply 

d'Y 

dx4 = 0 
a3r 
3AT

3 

a3^ 
ax3 

(22) 

(23) 

From Eqs. (22) and (23) it follows that (33 W3x3) = 0, which 
implies that (32y/aA-2) is a constant. Additionally, the value 
of this constant can be shown to be zero from the boundary 
condition in Eq. (7). Proceeding in the same way and using 
the boundary conditions in Eq. (6), it is trivial to show that 
(dY/dx)= Y(x,t) = 0. This implies from Eqs. (18) and (17) 
that i/=0 and 0C = 0/. Clearly, the maximum invariant set 
for the system comprises the set of points where 0 = 0/, 
0 = 0, and E4

=,>-,(*, r) = 0. If there exist functionsy,(x, t)*0, 
/ = 1, 2, 3, 4 such that Y = Zi

=lyi = 0 holds, then the set 
S = \Z : V{'\Z) = 0, V/ = l, 2,...,00) contains entries other 
than the trivial solution Z = Zdesired. In such a situation we 
cannot claim global asymptotic stability of the equilibrium 
point. Such a situation may arise in the case of symmetric 
deformation in opposition, shown in Fig. 2, where y\(x, t) 
- - v:(.v, f) and ^3(.v, t)= -yt(x, t). In such a situation, the 
residual energy of the system remains trapped within the 
beams. There exists no net interacting moment between the 
hub and the beams, and the hub remains motionless at its 
desired configuration 0 = 8/. 

The case of antisymmetric deformation in unison, shown in 
Fig. 2, was considered in Ref. 4. In this case, it is assumed that 
y,(x, ')=>':(*, t)=yy(x, t)=y*(.x, t). When Y(x,t) = 0, this 
implies that y,(x, f) = 0 for ;' = 1, 2, 3, 4. Therefore, for anti- 
symmetric deformation in unison, it is quite simple to show 
that the set S = (Z : K<-"(Z) = 0, vy = 1, 2,...,00) contains 
only the equilibrium point Z = Zdesired. Consequently, we can 
establish the asymptotic stability property of the hub with the 
flexible appendages undergoing antisymmetric deformation in 
unison under the input defined by Eq. (11). The control law 
given in Eq. (11) was used to stabilize the system to the equi- 
librium point in Ref. 4, but no formal proof for the asymptotic 
stability was provided. 

Conclusion 
The rest-to-rest maneuver of the distributed parameter sys- 

tem consisting of a rigid hub with four cantilevered flexible 
appendages was studied. The best choice of the control input 
resulted in the negative semidefiniteness of the derivative of 
the Lyapunov function. An invariant set analysis of the system 
was subsequently carried out using an asymptotic stability the- 
orem.1 The analysis establishes the fact that the hub-ap- 
pendage system is globally asymptotically stable when the sys- 
tem undergoes antisymmetric motion with deformation in 
unison. 
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NEAR-MINIMUM-TIME THREE-DIMENSIONAL MANEUVERS 
OF RIGID AND FLEXIBLE SPACECRAFT 

Mark J. Bell1 and John L. Junkins2 

An approach is presented to accomplish large angle, nonlinear, three dimensional 
attitude maneuvers in either near-minimum-time or near-minimum-fuel. The 
method permits the specification of a torque shaped reference maneuver of the 
near-minimum-time (bang-bang) or near-minimum-fuel (bang-off-bang) type; the 
instantaneous switches are replaced by controllably sharp spline switches to reduce 
excitation of flexible degrees of freedom. A Lyapunov method is used to design 
tracking-type control perturbations to suppress errors due to disturbances and 
model errors. The method is illustrated by numerical simulations and some 
experimental results using the ASTREX test article. 

INTRODUCTION 
Primarily due to mass considerations, future spacecraft will most likely have 

large. flexible appendages and exhibit significant coupling between overall rigid 
body motion and vibratory motion. Many of these spacecraft will be required 
to perform a variety of maneuvers in three-dimensions in near-minimum-time, or 
near-minimum-fuel, with limited computational abilities, while suppressing flexible 
modes of vibration. A torque-shaped reference maneuver design, augmented by a 
Lyapunov stable tracing law can achieve these stated requirements with robustness 
in the presence of uncertainty. 

The main goal of this paper is to demonstrate one effective approach to control 
a flexible spacecraft in near-minimum-time in three dimensions while actively 
and passively suppressing flexible modes of vibration. Secondarily, an analogous 
development for the the near-minimum-fuel case are presented. Feasibility of 
this approach is discussed based upon analysis, computer simulation using both 
a rigid-body and a flexible-body simulator, and through results from laboratory 
experimentation. The experimental portion of this research was performed on the 
Advanced Space Structure Technology Research Experiment (ASTREX) test article 

1 Student Member AIAA, Graduate Research Assistant 
2 George J. Eppwright Professor, Fellow AAS, Fellow AIAA 
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located in the Phillips Laboratory, Edwards Air Force Base, California. This study 
was undertaken as a part of the NASA/DOD Guest Investigator program. 

The basic concepts underlying modern spacecraft dynamics and control have 
been treated by many authors, including Junkins and Turner.1 Single-axis control 
of flexible spacecraft has been studied2-6 and the optimal control problem in three- 
dimensions has been addressed by Vadali, Singh, and Carter.7'8 Near-minimum- 
time control of dynamic systems, which include single-axis maneuvers of flexible 
spacecraft and flexible manipulators, have also been studied.9-12 The purpose of 
this paper is to present a general three-dimensional approach, leading to maneuver 
laws for the ASTREX structure. General model information, as well as a rigid body 
model and a flexible body model for the ASTREX test article, are available.13'2-14 

A near-minimum-time approach is formulated to control the ASTREX orientation 
while vibration is attenuated using input smoothing11. Additionally, effects of model 
errors and disturbances are compensated using an asymptotically stable feedback 
controller based on the work by Junkins et al11, Wie et al15, Vadali16, and Junkins 

and Kim17. 

EQUATIONS OF MOTION 
The rigid body dynamics are modeled using Euler's equations for a rigid body. 

The matrix [I] is the inertia matrix, w is the angular velocity vector, [w] is the matrix 
representation of the standard cross-product, and [B] is the control influence matrix, 
each of which has dimension 3x3. 

[I\ü + [u\[I\u = [B]u 

The control input to this equation consists of a reference control, uref, 

tracking control or terminal control, 6u, as shown below. 

M = Mre/ + ^ 

The kinematic equations used in the spacecraft model, equations (3) and (4), 
are the set of 1-2-3 Euler angles which were used to determine the body's position 
in space relative to a fixed coordinate system. 

(1) 

and a 

(2) 

{*}- Cos(62) 

Cos{63) -Sin(63) 0 
Cos(02)Sin{93)     Cos(62)Cos(03) 0 

-Sin{92)Cos(63)    Sin(82)Sin{83)    Cos{82) 
{a}     (3) 

(a} = 
Cos(92)Cos(83)     Sin{83)    0 
-Cos{82)Sin{83)    Cos(83)   0 

Sin{82) 0 1 
(4 = [C(0)\ {e} (4) 

These equations are used to orient the rigid body relative to a fixed inertial 
frame. 
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THE CONTROL LAWS 
Near-Minimum-Time Maneuvers 

The simplest minimum-time maneuver for a near-rigid vehicle undergoing a 
single-axis maneuver is a single switch "bang-bang" control law. However, the 
sharp switching will excite some flexible modes of vibration. The near-mimmum- 
time maneuver proposed rounds off the sharp switches by replacing the sharp 
discontinuities with a controllably sharp cubic polynomial and introducing a shaping 
parameter a : 0 < a < 0.25, where at a = 0, the torque profile is a square wave and 
at a = 0.25, the torque profile is a smooth sine-shaped profile satisfying zero initial 
and final slope conditions. It should be noted that as a increases, the maneuver 
time (tf) increases, and the vibrational energy is expected to decrease due to the 
greatly increased rolloff in the spectral content of the control input. The cubic 
polynomial, defined as the shaping function f{t,a,tf) is defined11 as follows. 

{ (it)2 I3 -2 (Si)l iovO<t<At = atf 
1 forAt<t<t//2-Atsti 

f{t,a,tf) = < i - 2(Tzi)213 ~ 2 (^)l   for fl ^* -tf/2 + At ~ h     (11) 
_1 for t2 < t < tf - At = t3 

-l+(^)2[3-2(^)]    iovtz<t<tf 

The basic idea underlying this torque-shaping approach is to establish a smooth 
rigid body reference maneuver, £re/(t), then calculate the corresponding open loop 
control law by inverse dynamics. This reference torque, when applied to the body, 
will make £(t) approximate 0ref{t). The Lyapunov tracking law, which is discussed 
in the next section, seeks to cause 0(t) to track 6ref(t) in the presence of disturbances 
and other non-ideal effects while also suppressing structural vibrations. As will be 
evident, it is possible to develop the tracking law to guarantee asymptotic stability 
in the absence of model errors. The development of the open loop control law is 
shown below, beginning with the standard linear second order equation of motion 
for a rigid body: 

[I]i=[B}u (6) 

= [B]UmaXf^^f) W 

This equation can be applied to the reference maneuver, manipulated, and then 

integrated twice, yielding 6ref, 0re/, and 0ref as shown. 

ie/(t) = [/]-Mß]Mmax /(*,«,*/) (8) 

B4.ef{t) = B^ + B0t + [t\-'L\B\umax j j   f{v,<*,tf)dr,dT 

(9) 

(10) 
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However, the shaping function, f(t,a,tf), can be integrated twice, piecewise, 
with the elegant generalization of the bang-bang (a = 0)result: 

Jtf jT/fo.a,*/)^^ Q - \a+ la2) %? (11) 

Substituting this result into the previous equation and considering a rest-to-rest 

maneuver (ö(t0) = 0(tf) = o) yields the following expression for 8f - £,: 

Lf-L = [I)-1 [B] {"ma* tf2} (j ~ \ « + ^ <*) (12) 

This equation can then be inverted to solve for the required maneuver time 
on each axis, as a function of the maneuver angle change, shaping parameter, and 
maximum torques as: 

fs ^max2 

fa "^"rnaxa 

[B}-l[i}(Qf-L) 

The total maneuver time, tf, is then simply: 

tf = max(tfltf2tf3) 

(13) 

(14) 

The effect of increasing alpha on a normalized maneuver time and the resulting 
profiles are shown below as Figure 1. As expected, the maneuver time increases as 
a increases, as illustrated in the figure. 

0.2 0.4 0.6 0.8 
normalized time 

1.2 

Figure 1. - Bang-Bang Shaping Function vs. Normalized 
Time for Increasing a. 
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The total maneuver time, th can be substituted into the previous equation 
and a vector of constants containing the maximum torques, which will be applied 
on each axis, uR, can be determined. 

_ [B]-1 [I] (lf - gp) J_ (is) 

The values of uR, t/, and a selected value of a, can then be inserted into 

equations (8)-(10), yielding: 

eref(t) = [I]-1[B]uR f(t,a,tf) (16) 

eref(t)=L + [I\-1[B)^R f /frM/)*" (17) 

•J 0 

eref(t)=L+Lt+[I}-1[B)uRJQ   I    f(V,<*,tf)dVdT (18) 

Now, using the exact rigid body dynamics, we can solve for a control uref(t) 
which would cause the rigid body vehicle to execute the maneuver 6ref{t). First, 
the kinematic equations for the set of 1-2-3 Euler angles, shown in matrix form as 
equation (4), can be used and then differentiated to determine wre/(t) and w(t). 

feW(t) = lC (fi«/)] *~f (19) 

m = Jt   [C (Sref)] fir./  + \C (««/)] 8~f ^ 

The reference torque, uref(t), can then be found by inverse dynamics, using 

Euler's equation. 

Uref{t) = [B]-1  ([J] fkref + [Üref] [I] ^ref) (21) 

Hence, the near-minimum-time torque-shaped maneuver has been extended to 
the three dimensional case. , 

Motivated by the need to consider a wider class of reference maneuvers, such as 
near-minimum-fuel, it was noted that any function which is twice integrable may in 
principle be used as the shaping function. Seeking to establish a torque-shaped 
family of near-minimum-fuel maneuvers, we consider the bang-off-bang control 
parameterization shown below as equation (22), where t3 denotes the time at the 
end of the first pulse, ß corresponds to the coast time, and a parameterizes the 
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sharpness of the of the control on/off profile. 

f(2h)2[3-2(£)] 

-l+(^)2 [3-2(^)] 

for 0 < t < «i = a2atz 
for «i < t < t2 = (1 - 2a)*3 

for <2 < * < *3 = «3 
for i3 < * < U = h + ß (22) 
for U < t < <5 = h +13 + ß 
for t5 < t < t6 = t2 +13 + ß 
for t6 < t < tf = 2t3 + ß 

Following the same procedure yields an alternative torque shaped control law. 
Figure 2 shows the effect of increasing alpha from 0 to 0.25 on the normalized 
maneuver time while holding ß constant at 1. This figure shows that the maneuver 
time increases as the control profile becomes smoother. 

0.2 0.4 0.6 0.8 1 
normalized time 

1.2 

Figure 2. - Bang-Off-Bang Shaping Function vs. Normalized 
Time for Increasing a. 

The effect of decreasing beta, while maintaining a constant value for a of 0.25 
on the maneuver time, is shown in Figure 3. Again, the maneuver time increases 
as the coast time is increased, as seen in the figure. 
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0.2 0.4 0.6 0.8 
normalized time 

Figure 3. - Bang-Off-Bang Shaping Function vs. Normalized 
Time for Decreasing ß. 

Two open-loop control laws have been developed in this section; computational 
and laboratory experimental results are discussed below. These open-loop control 
laws are established for a general rigid body that moves in three-dimensional space, 
although it is recognized that these reference maneuvers may be significantly sub- 
optimal for the case when the gyroscopic coupling effects are large. Application 
of this torque-shaping scheme to any rigid body requires a priori knowledge of the 
inertia matrix and the control influence matrix, both of which are required to be 
invertible. As is evident in the robustness studies, however, including a well designed 
tracking law to compensate for larger-than-expected errors. 

The open-loop control laws presented in this section are exact solutions based 
on. an inverse dynamics approach. Although the control laws are expected to 
perform well, a closed-loop feedback control law will almost always be needed 
to compensate for approximation errors as well as disturbances and identification 
errors. 

A Lyapunov Tracking Controller 
The tracking controller is a Lyapunov tracking controller which uses a different 

parameterization of the positional error energy term. The Euler parameters, £, are 
used to relate the actual frame to the reference frame of the body; note ( is often 
known as the "error quaternion". Hence, when these two frames coincide, the Euler 
parameters will be identically C = [1000]T. The Lyapunov function and its first 
derivative is shown below. 

2V = 8yiT[I\Sui+CT[W}C (23) 

V = 6CJ
T
[I]SU + C   [W}( (24) 

Through manipulations to follow, the time derivative of V in Equation (24) can 
be re-arranged to form V = &J{fnct(5u,C,w)}, and this structure can be exploited 

100 



to determine a control law for Su which guarantees V < 0. Calculating the Euler 
parameters from the 1-2-3 set of Euler angles of the actual frame and the reference 
frame is a straightforward process. The orthonormal rotation matrix from the 
inertially fixed frame to the actual frame is shown below. It should be noted that 
Si and Ci stand for sin(9i) and cos{9i), respectively. 

PXS)] = 
C2C3 S3C1 + C3S2S1 Si S3 - C3S2C1 

-C2S3 C3C1 - S3«2 Si S1C3 - S3S2Ci 

S2 -C2*l C2C1 

(25) 

Additionally, the rotation from the fixed frame to the reference frame is 
identical in format with the exception that Si and d stand for sin(0re/t) and 
cos(0re/,), respectively. The rotation matrix between these two frames can be found 
easily using linear algebra, noting the fact that the inverse of an orthonormal matrix 
is its transpose. The rotation from the fixed frame, whose orthogonal unit vectors 
are denoted by n, to the body reference frame, 6re/, and to the actual frame, 6, are 

shown below. 

fe=[T(ö)]n (26) 

hef = [nO-ref)]fL W) 

The second of these equations can then be inverted yielding an expression for 
projecting the fixed frame unit vectors onto the reference frame. 

n = [T(eref)fbref (28) 

This equation can then be substituted into equation (26), yielding the desired 
relationship between the actual frame and the reference frame. 

k={T(9)][T(0ref))Tlef (29) 

The error rotation matrix between the two frames is then defined as [R]. 

[R} = {T(9)][T(eref))T ~ (30) 

We note that [R] is typically a near-identity matrix because it represents the 

tracking error angular displacement of S from bref. Once [R] has been computed, 
the set of Euler parameters between these two frames can be computed as follows: 

trace(R) = i?u + R22 + #33 (31) 

Co = yJ\\(l + trace(R))\ (32) 
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Ci = 77"(^23 - -R32) 
4Co 

c2 = 7r^3l_jRl3) 

4Co 

(33) 

(34) 

(35) 

This set of Euler parameters is governed by the following matrix differential 
equation: 

-Ci -C2 -C3 

Co -C3 C2 

C3 Co -Ci 

.-C2 Ci Co 

c = 6u (36) 

C = [G(0] fa 

Taking the transpose of this equation yields: 

f = 6uT[G(0}T 

(37) 

(38) 

By utilizing this result and Euler's equation (1) to eliminate [I]8u, equation 
(24), the derivative of the Lyapunov function can be arranged in the desired form. 
This will permit construction of a stabilizing feedback control law. 

V = 6u> {-IWU + FWiekre/ + [B]Su + [G(C)]T [W] C) (39) 

= -6uT{K}6u (40) 

The second step, Equation (40), is motivated by the desire that 6u be chosen 
such that V < 0. Equating the right hand sides of the previous two equations yields 
an intermediate algebraic equation: 

-[K)5ui= -mqu + [Zref}{I}uref + [B}6u + [G(0}T[W}( (41) 

Solving for the feedback control 6u from equation (41) yields the asymptotically 
stable feedback control law: 

8u = [B]-1 {-[K]6u + pj][/]6i - PwlMa«/ - [C(C)]T [W] C) (42) 

This perturbation is superimposed on the reference control in the sense u(t) = 
uref(t) + 6u{t). The gains [K] and [W] were selected subject to the eigenvalue 
placement constraint that they produce critical damping on the linearized second 
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order linear model for rigid body motion. In addition, a scaled inertia matrix was 
used as the gain matrix [K], since this provides a one-parameter family of symmetric 
and positive-definite gain matrices. It should be noted that the matrix [W], as shown 
below, is not positive-definite. However, if the last three terms in the relative Euler 
parameter set £ are zero, then perfect tracking is accomplished (i.e. the set of Euler 
parameters is redundant). Hence, the fact that [W] is semi-positive definite is not a 
problem due to the redundancy of the Euler parameters. The gains used throughout 
this paper are shown below. More generally, the gain matrices would be subject to 
optimization over the set of stable gains to extremize a performance measure, along 

the lines of Junkins and Bang18. 

[K] = ci [/];  ci = 2.5298  and  [W] = c2 

0   0T 

0    [I] 
c2 = 1.6 

EXPERIMENTAL RESULTS 

Bang-Bang Experimental Results 

The Advanced Space Structure Technology Research Experiment (ASTREX) 
test article is a large experimental structure that resembles a.spaced-based laser 
beam expander as shown in Figure 4. The 5000 kilogram structure is mounted on a 
spherical air bearing and is maneuvered using a specified set of cold gas thrusters. 
A set of six 8-pound thrusters or a set of four 200-pound thrusters plus two 8-pound 
thrusters are available for controlling the structure. For each set, two thrusters fire 
in unison to produce torque. Hence, three sets of two thrusters firing in unison are 
needed to control the test article in three dimensions. All thrusters are powered 
by compressed air which is stored in two pressurized tanks. These pressure tanks 
have a limited supply of compressed gas which results in a fuel constraint. To avoid 
difficulties with the fuel constraint, only the bang-off-bang control law is used in 
conjunction with the 200-pound thruster set. 

The first set of experimental results was tested using the set of 8-pound 
thrusters operating at a maximum thrust of 3 pounds in conjunction with the 
open-loop bang-bang control profile. The inertia matrix and the control influence 
matrix for the structure were given in reference 14 and were found by using a 
system identification technique. Due to the fuel constraint and to a nonlinear valve 
problem associated with low tank pressure, the maximum thrust from each thruster 
was limited to three pounds . The open-loop reference profile used on the first test 
is a fifty-degree yaw maneuver. 

103 



11 

02-MAR-03 

Gimbal anglas: Roll, Pitch, Yaw dograaa 

Figure 5 - Bang-Bang Open-Loop Experimental Angle Profile 
on the ASTREX Test Article 

During experimentation, the thruster commands were given in volts, which were 
measured and stored as input, and a pressure feedback on each individual thruster 
was used to determine the output force at each thruster. Additionally, three gimbal 
angles and tank pressure were also sensed, and stored as output. Figure 5 shows 
the gimbal angles in the body frame with respect to time in the form of three strip 

This figure shows that the test article moved approximately forty-two degrees 
in the yaw direction. This is eight degrees short of the specified maneuver. The 
rotation in the roll direction is oscillatory, but small. This small discrepancy could 
have been caused by any unmodeled, unsymmetric mass in the model or by a 
thruster pair generating slightly different forces, or due to unmodeled suspension 
system dynamics. The pitch angle encoder appears to have a sensor or grey code 
problem which causes the noisy output signal. However, the actual and measured 
motion in the pitch direction are small. It should be noted that these tests 
were performed open-loop and thus no on-line feedback corrections were made to 
compensate for modeling or hardware errors. It is anticipated that the closed-loop 
control capability for the ASTREX structure will exist in the calendar year 1994 

im6The motion in the yaw direction is approximately 16% short of the specified 50 
degree maneuver; this could have been caused by a number of factors. If the inertia 
used in the design model was smaller than the actual inertia of the structure, a 
smaller angle change would be expected. The hardware cables are suspended from 
the structure; this produces cable drag, a rotational spring-like force in the yaw 
direction, as the cables are pulled away from their equilibrium position. A cable- 
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follower mechanism attempts to compensate for this problem; while the magnitude 
of the cable-follower induced disturbances are reduced, the cable-follower dynamics 
adds additional complexity in modeling the disturbances acting on the structure. 
This uncompensated cable drag phenomena would also produce smaller motion in 
the yaw direction in addition to a small angular velocity which would remain about 
the yaw axis as the structure returned to its equilibrium position. A final cause of 
the under-rotation problem is known to be due to low tank pressure near the end 
of the maneuver. Figure 6 shows the thrust commanded to each individual thruster 
in volts, this graph is identical to the output from the control law design except for 
the conversion of thrust to volts. 

8 lb thru»ter» commands(volt*) 

Figure 6 - Bang-Bang Open-Loop Experimental 8 Lb. Commanded 
Thruster Profile on the ASTREX Test Article 

Figure 7 shows the output thrust at the nozzle of each thruster. The 
degradation of the thrust on the first two sets of thrusters can be seen beginning 
around 18 seconds, where the output profile becomes piecewise linear and decreases 
in comparison with the smooth commanded thrust. Although the degradation is 
not severe, it is definitely present. At low pressures, the solenoid valves behave in 
a poorly-modeled nonlinear fashion, especially evident when the valves are being 
closed. Notice the lack of left-right symmetry on all six final "braking" pulses of 
Figure 7. 
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Figure 7 - Bang-Bang Open-Loop Experimental 8 Lb. Actual 
Thruster Profile on the ASTREX Test Article 

02-MAR-S3 
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Figure 8 - Bang-Bang Open-Loop Experimental Tank 
Pressure Profile on the ASTREX Test Article 

Figure 8 shows the tank pressure profile in pounds per square inch. It is noted 
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that thrust deterioration for the 8-pound thrusters occurs as the tank pressure falls 
below 150 psi at 18 seconds. Notice, comparing Figures 7 and 8, that the relatively 
most significant thruster anomalies occurred at tank pressures well below 150 psi 
(i.e. the final 15 seconds of the maneuver). 

Bang-Off-Bang Experimental Results 

The second set of experimental results was performed using the bang-off-bang 
open-loop control law in conjunction with the set of four 200-pound thrusters and 
two 8-pound thrusters. The specified maneuver was a 150 degree yaw maneuver 
with the 8-pound thrusters limited to three pounds each and the 200-pound 
thrusters limited to 50 pounds each for fuel and safety reasons. Figure 9 shows 
the gimbal angles verses time for the second set of experimental results. 

02-MAR-93 

9 12 IS 
Tim« (tec) 

Gimbal angle«: Roll, Pitch, Yaw degree« 

21 24 27 

Figure 9 - Bang-Off-Bang Open-Loop Experimental Angle Profile 
on the ASTREX Test Article 

This figure shows that a yaw angular rotation of only 32 degrees was accom- 
plished from a required 50 degrees. The yaw angular velocity at the end of the 
maneuver was in the direction opposite of the maneuver; this appears to be the 
result of cable drag. The roll angle was again oscillatory but small and the pitch 
sensor exhibits the same noise characteristics. 

Figure 10 shows the commanded voltage to the set of 200-pound thrusters. 
Each 200-pound thruster consists of two components which fire in opposite direc- 
tions and are measured and controlled separately. 
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Figure 10 - Bang-Off-Bang Open-Loop Experimental 200 Lb. Commanded 
Thruster Profile on the ASTREX Test Article 
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Figure 11 - Bang-Off-Bang Open-Loop Experimental 200 Lb. Actual 
Thruster Profile on the ASTREX Test Article 
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The output pressure measured at the nozzle of the 200-pound thrusters is shown 
as Figure 11. This figure illustrates how the two components of each thruster work 
in unison to produce the positive and negative components of the input signal 
Although the reproduction of the input signal does not deteriorate near the end of 
the maneuver, some anomalous pressure leakage is evident. 

Figure 12 shows the commanded voltage levels to the 8-pound thruster set 
which is used in conjunction with the 200-pound thrusters to provide controllability. 
This figure shows that the first two sets of 8-pound thrusters are zero since they 
have been replaced by the 200-pound thrusters. The third set of 8-pound thruster 
commands are shown as the two lower plots. 

02-MAR-93 

12. 
Tim« (MC) 

8 lb Minister* command*(volts) 

Figure 12 - Bang-Off-Bang Open-Loop Experimental 8 Lb. Commanded 
Thruster Profile on the ASTREX Test Article 

The pressure sensor at the nozzle of the 8-pound thrusters is shown as figure 
13. The first two sets of readings show that these thrusters are firing although they 
have been commanded to be off. This phenomena may be the result of electrical 
feedback within the hardware. Again, the third set of 8-pound thrusters have output 
deterioration near the end of the maneuver beginning at 10 seconds. 

The final experimental figure (Figure 14) shows the tank pressure verses time. 
It is noted that at 10 seconds, where the 8-pound thruster degradation begins, the 
tank pressure has fallen below 150 psi. Figure 14 shows the tank pressure verses 
time for the bang-off-bang control law. It should be noted that during the coast 
period, the rate of pressure loss is approximately zero. This is the characteristic 
of the bang-off-bang control law which, of course, that saves fuel. The fact that 
there is a measurable negative slope, however, indicates that significant leakage is 

109 



17 

occurring somewhere in the complicated plumbing system. 
02-MAR-93 
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Figure 13 - Bang-Off-Bang Open-Loop Experimental 8 Lb. Actual 
Thruster Profile on the ASTREX Test Article 
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Figure 14 - Bang-Off-Bang Open-Loop Experimental Tank 
Pressure Profile on the ASTREX Test Article 
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CONCLUSIONS 
A torque-shaped maneuver approach for a spacecraft in three-dimensions has 

been developed and demonstrated to work extremely well using open-loop and 
closed-loop simulations for the bang-bang and the bang-off-bang maneuvers. In 
each case tested, the open-loop tracking error was essentially zero; the only errors 
introduced in the simulation were due to integration and interpolation errors. The 
closed-loop Lyapunov tracking control law drove large initial tracking errors to 
essentially zero within a few seconds and kept errors negligible until the final time 
using simulations where only initial condition errors were introduced. Additionally, 
only modest degradation of this performance resulted when significant model 
errors were introduced into the simulation, the Lyapunov tracking control law 
compensated for the model errors and initial condition errors, and again regulated 
the tracking error to essentially zero by the final time. Hence, the Lyapunov tracking 
controllers were shown to be robust with respect to modeling errors and initial 

condition errors. .     , 
The experimental portion of this research showed some positive results, how- 

ever   also revealed are several hardware problems likely to be resolved with fu- 
ture'evolution of this experimental facility. The experimental open-loop maneuvers 
showed the same general trends as the simulated data although they differed in mag- 
nitude. This discrepancy appears to have been caused by an underestimation of the 
mass of the structure and some unmodeled effects due to solenoid valve nonlinear- 
ities. Secondary problems are apparent in modeling the gnnbal and cable-follower 
dynamics. Simulated maneuvers using an increase in mass of 10% on the open and 
closed-loop simulations were performed.   The experimental data exhibits similar 
open-loop characteristics to the simulated data with a mass error. This problem 
was easily compensated for in simulation by closing the control loop. Closed-loop ex- 
perimental results are not yet available due to current system hardware limitations 
mainly, the angular rate measurements. Also, a significant number of unexplained 
anomalies were encountered in the experimental results; however, these may be 
considered typical of the early experimental "shakedown" of such a complicated 
electromechanical system. 

The ASTREX test results also revealed some actuator problems generating 
the commanded thrust profiles using the 8-pound thrusters near the end of the 
maneuver when the tank pressure dropped below 150 psi. This problem stems 
from the fact that the cold gas thrusters' solenoid valves were designed assuming a 
constant back pressure of 500 psi. Our results suggest that the design specification 
of 500 psi is quite conservative; the thrusters operate reliably down to 175 psi 
using low thrust commands. With the present pressurized gas supply system, very 
low tank pressures (j 150 psi) routinely occurred because the tanks can only be 
pressurized between maneuvers. The thrust generation problem could be handled 
by performing maneuvers that only require only a very small amount of fuel and 
thus maintain a tank pressure above 150 psi, however, these small angle maneuver 
are less interesting and remove many of the nonlinear issues of intent from the 
system dynamics. Another problem was the support system in the yaw direction 
which was caused by to the natural equilibrium position of the structure and a 
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disturbance torque clue to cable drag and cable-follower dynamics. These two 
phenomena could also cause the open-loop experimental maneuver to fall short of 
the required final yaw angle as well as causing the yaw angle to drift back towards 
its starting orientation upon completion of the open-loop torque profile. Each of 
these problems can be handled with rigorous modeling before deriving the open- 
loop control law or by using feedback compensation with appropriate sensing system 
enhancements. ... ■,   • 

The goal of this paper, to extend the near-immmum-time maneuver design 
technique to three-dimensions, was accomplished. The simulated results, both open- 
loop and closed-loop, were excellent and the preliminary experimental tests showed 
promising results. 
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Abstract 

A new family of orientation parameters derived from the Euler parameters is presented. They 
are found by a general stereographic projection of the Euler parameter constraint surface, a four- 
dimensional unit sphere, onto a three-dimensional hyperplane. The resulting set of three 
stereographic parameters have a low degree polynomial non-linearity in the corresponding 
kinematic equations and direction cosine matrix parameterization. The stereographic parameters 
are not unique, but have a set of "shadow" parameters. These "shadow" parameters are generally 
numerically different, yet represent the same physical orientation. Using the original 
stereographic parameters combined with their shadow set it is possible to establish a set of three 
parameters which can describe any rotation without a singularity, yet with one discontinuity. The 
symmetric stereographic parameters are ideal to describe departure motions, since they can be 
chosen such that they are nonsingular for up to a principal rotation of ±360°. The asymmetric 
stereographic parameters are well suited for describing the kinematics of spinning bodies, since 
they only go singular when oriented at a specific angle about a specific axis. A globally regular 
and stable control law using symmetric stereographic parameters is presented which can bring a 
spinning body to rest in any desired orientation without backtracking the motion. 

Introduction 

While the Euler parameters (quaternions) describe an arbitrary orientation without a 

singularity, they form a once-redundant set. The following development studies a method to 

stereographically project the Euler parameters onto a three-dimensional hyperplane and form a 

family of sets of three parameters called the stereographic parameters. This study is motivated by 

1. To be presented at the AAS/AIAA Space Flight Mechanics Conference, Albuquerque, New Mexico, Feb- 
ruary 13-15 1995. 
2. Graduate Research Assistant, Department of Aerospace Engineering, Texas A&M University, College 
Station, TX 77843. 
3. George Eppright Chair, Professor of Aerospace Engineering, Department of Aerospace Engineering, 
Texas A&M University, College Station, TX 77843, Fellow AAS. 
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earlier work done by Marandi and Modi [1], Tsiotras [2] and Shuster [3]. In particular, Marandi 

and Modi introduce a set of three parameters similar to the Rodrigues parameters (singular at a 

principal rotation of O = ±180°), which move the singularity out to a principal rotation O of 

±360°! Marandi, Modi and Tsiotras describe this modified set of Rodrigues parameters as the 

result of a stereographic projection of a four-dimensional unit sphere onto a three-dimensional 

hyperplane. This paper will explore the stereographic projection idea further and in a more 

generalized way, and show that both the classical Rodrigues parameters and the ModiAsiotras 

modified Rodrigues parameters can be considered a special case of the general symmetric 

stereographic parameters. Indeed, the method presented can be used to construct a set of three 

symmetric stereographic parameters which have their singular point anywhere between a 

principal rotation of 0° and 360°, or to construct a set of three asymmetric stereographic 

parameters which have their singular point determined by both a principal angle and an axis of 

rotation. Analogous to the Euler parameters, the stereographic parameters are generally not 

unique. The Euler parameters time variation, for any physical motion, generate a trajectory on the 

surface of the unit sphere constraint surface. The reflection of the Euler parameters (reversing all 

parameters signs) generates a second trajectory on the opposite of the sphere which corresponds 

to the same physical rotation. Each set of stereographic parameters has a set of "shadow 

parameters" which correspond to the reflection set of Euler parameters. These "shadow" 

stereographic parameters are generally numerically different from the original parameters, yet 

physically parameterize the same rotation. The developments presented herein are of significant 

academic importance; using stereographic projections it is easy to visualize the singularities of 

this infinite family of three parameter sets which include the classical and modified Rodrigues 

parameters. 

The modified Rodrigues parameters, as introduced by Marandi and Modi, are studied in 

further detail, since they present the largest range of non-singular rotations for the symmetric 

stereographic parameters. In combination with the corresponding set of "shadow parameters", a 

globally regular and non-singular Lyapunov attitude control is established in feedback form. 

The Euler Parameter Unit Sphere 

The four Euler parameters are well known and well studied in the literature. They can be 

developed directly from Euler's principal rotation theorem [3,4]. The angle O is the principal 
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rotation angle and the unit vector e is the principal line of rotation. 

ß0 = cos- ß, = Vsin- « = 1.2.3 W 

ßrß = ßj + ß? + ß2 + ß3 = 1 (2) 

The four Euler parameters ßf abide by the holonomic constraint given in equation (2). This 

equation describes a four-dimensional unit sphere. The Euler parameter trajectories on this sphere 

completely describe any possible rotational motion without any singularities or discontinuities. 

Note that the Euler parameters are not unique. The mirror image trajectory -ß(r) describes 

the identical rotational motion as ß(r). The negative sign means the rotation is accomplished 

about a principal axis of the opposite direction through the negative principal angle. Usually this 

non-uniqueness does not pose any difficulties since both sets have identical properties, correspond 

to the same physical orientation, and can be solved uniquely once initial conditions are 

prescribed. 

Because the Euler parameters satisfy one holonomic constraint, they form a once redundant 

set of equations. Three parameters are sufficient to describe a general rotation. However, the 

problem with any set of three parameters is that, as is well known, singularities will occur at 

certain orientations. Different three-parameter sets distinguish themselves by having different 

geometric interpretations and, especially, having their singular behavior at different orientations. 

Also of significance, most three-parameter sets introduce transcendental nonlinearities into the 

parameterization of the direction cosine matrix and related kinematical relationships. However, 

the classical Rodrigues parameters and other sets discussed herein involve low degree polynomial 

nonlinearities in both the direction cosine matrix and associated kinematical differential equation, 

without approximation. The Euler parameter description represents an attractive regularization 

which has no singularity, at the cost of having one extra variable. 

Stereographic Projection of the 4D unit Sphere 

If a minimum parameter representation is desired, the four Euler parameters can be reduced to 

any parameter set of three by an appropriate transformation. For example, the 3-1-3 Euler angles 
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or the Rodrigues parameters are very commonly used sets that arc easily transformed from the 

Euler parameters [3,4]. Marandi, Modi and Tsiotras found a set of modified Rodrigues parameters 

by means of a stereographic projection of the four-dimensional unit sphere onto a three- 

dimensional hyperplane. To describe the stercographic projection, imagine a three-dimensional 

sphere being projected onto a two-dimensional plane (analogous to the Earth map projection 

problem). A certain point is chosen in the 3D space called a projection point Next a 2D mapping 

plane is chosen. Every point on the unit sphere is then projected onto the mapping plane by 

drawing a line from the projection point through the point on the unit sphere and intersected with 

the mapping plane. 

mapping 
line 

projection 
point 

rotation 

unit 
circle 

Fig. 1.  Illustration of a Symmetric Stereographic Projection onto Hyperplane 
Orthogonal to ß0 axis. 

Figure 1 shows only a 2D to ID stereographic projection to keep the illustration simple. The 

results though can easily be expanded to a four-dimensional sphere since the axes are orthogonal 

to each other. Figure 1 shows a 2D unit circle getting projected onto a mapping line. With all these 

projections the Euler parameter ß0 is eliminated, since the mapping hyperplane normal is the ß0 

axis. They are called symmetric projections since the principal angle range is symmetric about the 

zero rotation angle. Asymmetric stereographic projections are projections onto a hyperplane with 
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a normal other than the ß0 axis, which do not have a symmetric principal angle range. The case 

where the Euler parameter ßlt fa or fo is eliminated is discussed later in this paper. 

Placing the projection point on the ß0 axis yields an even principal angle range about the zero 

rotation point. The mapping line is placed a distance of +1 from the projection point The 

parameters are scaled by this arbitrary distance, so having a distance of 2 between the projection 

point and the mapping plane would simply scale all the parameters by a factor of 2. 

Keep in mind that the Euler parameters are denned in terms of half of the principal rotation 

angle O. The point (1,0) on the circle corresponds to a zero rotation. The point (0,1) corresponds 

to a +180° rotation. Studying Fig. 1 it becomes evident that the reduced parameters go off to 

infinity when a point on the circle is projected which lies directly in the plane perpendicular to the 

ß0 axis through the projection point The two lines that need to be intersected are parallel to each 

other, causing the intersection point to move to infinity. The corresponding principal rotation 

obviously yields the angle at which the reduced set of parameters will go singular! By placing the 

projection point at different locations on the ß0 axis, the maximum principal rotation angle is 

varied. If the projection point is outside the unit circle, no singularity will occur, but the projection 

is no longer one-to-one. Some areas of the mapping will start to overlap in the projection plane. 

Clearly this is not a desirable feature because of the ambiguity this lack of uniqueness would 

introduce (given the projected coordinates, we cannot uniquely orient the reference frame). 

The angle Os is the principal angle of rotation where the stereographic parameter vector £ 

encounters a singularity. This angle 05 determines the placement of the projection point a. 

°5 (3) a = cos— v-v 

The transformation from the Euler parameters to a general set of three symmetric 

stereographic parameters £ is defined as: 

C.= Jl_        /=l,2,3 (4) 

The condition for a symmetric stereographic parameter singularity, evident in equation (4), is 

shown below. 
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= ßo = 
«t> 

cos- (5) 

If a < 1 this condition is satisfied at an infinite set of orientations. If the projection point is on 

the unit sphere surface, then a = -1 and a singularity is only achieved at O = ±360°. 

ßn = 
l+CrC (6) 

ß, = «t 
■a + Jl+?C,{l-a2) 

i+CrC 
i = 1,2,3 

The inverse transformation from the general stereographic parameters C to the Euler 

parameters ß, is given in equation (6). This equation holds for both the symmetric and asymmetric 

stereographic projections. 

Since the Euler parameters are not unique, it is valid to rewrite equation (4) in terms of -ßr 

For the general case these new stereographic parameters t? correspond to the mirror image of the 

Euler parameters and are generally not numerically equal to C of equation (4). However, the 

resulting vector g5 will describe the same orientation as the original parameters and are herein 

referred to as the "shadow points" of £ and are denoted with a superscript 5: 

«f 
~h Pi 

-ß0-
ß     ßo+a 

(7) 

Using equation (6) the shadow point C5 can be expressed directly as a transformation of the 

original parameters C and the projection point a as: 

-a + Jl+;TC(l-a2) 

a + 2aCrC + Jl+ftO- °2). 
(8) 

The fact that the shadow point vector £5 generally has a different behavior than the original £ 

will be useful when describing a rotation. The family of stereographic parameters generally has 

two distinct sets of parameters, corresponding to g(0 and -ß(0, which describe the identical 
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rotation and are related to one another by equation (8). 

The differential kinematic equations for £ are found by differentiating equation (4). 

C = 
ßi Mo 

ß<rö   <ß0-«> 
(9) 

By making use of the differential kinematic equations of the Euler parameters [4] given as: 

ßo ßo "Pi -P2 ~h 0 

ßl 1 ß,   ßo  -f>3   h 
(0, 

ß? 
2 h ß3   ßo "ßl 

ö). 

ß3 
ß3-ß2ßi   ßoj 0) 

(10) 

and the basic definition of the stereographic parameters given in equation (4), the differential 

kinematic equations for the stereographic parameters can be found. Their general form is very 

lengthy and not shown here due to space limitations. The most important special cases are 

discussed below. 

Viewing Fig. 1, it becomes evident that a set of three symmetric stereographic parameters 

cannot have the singularity point moved beyond a principal rotation of ±360°. Going beyond 

±360° would mean finding a projection point that would map the entire unit sphere more than 

once, i.e. not a one-to-one map onto the projection plane. Therefore the symmetric parameters are 

better suited for regulator or "moderately large" departure motion problems, than for spinning 

body or large angle maneuver cases. 

Note that for the zero principal rotation, the asymmetric stereographic parameters are not 

equal to zero. The projection of the ß0 parameter onto fr = a + 1 is not zero because ß0 is one at 

the zero principal rotation. 

Asymmetric stereographic parameters have a qualitatively different singular behavior from 

the symmetric stereographic parameters. The Euler parameter ß0 contains information about the 

principal rotation angle only (i.e., the direction of e does not affect ß0). Eliminating ß0 during a 

symmetric projection causes the singularity to appear at a certain principal rotation angle, 
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independent from the principal axis of rotation e. Since for the symmetric projections, the zero 

rotation point (1,0,0,0) lies on the ß0 axis and the singularity occurs at ±Os. we have a symmetric 

range of nonsingular principal rotations {-<t>s < O < 44>s} about the zero rotation, regardless of 

the direction of e. 

mapping 
line. 

unit 
circle projection 

point 

Fig. 2.  Illustration of a Asymmetric Stereographic Projection onto Hyperplane 
Orthogonal to ßj axis. 

For an asymmetric projection, one of the Euler parameters ßlt ß2, or ß3 is eliminated. Each 

one of these parameters contains information about both the principal rotation angle and the 

direction of §. Therefore singularities will only occur at certain angles about the i-th axis 

(corresponding to ßi). Figure 2 illustrates an asymmetric stereographic projection where ft is 

eliminated. All possible projections points a now lie on the ßj axis, and the mapping hyperplane 

perpendicular to fr is defined at ft = a+1. Since the zero rotation is no longer in the center of the 

nonsingular principal angle range, the valid range of principal angles is non-symmetric. A 

singularity will occur at Osl or 0S2, where these two principal angles are unequal in magnitude. 

Given a singular principal rotation angle <&S1 which lies between ±180°, the corresponding 

projection point a is defined as: 
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*S1 (11) 
a = cos-«- 

The second singular principal rotation angle <DS2 is then found as: 

(12) 
*S2 = 2K-*SI 

The transformation from Euler parameters to the corresponding asymmetric Stereographic 

parameters is the same as given in equation(4), with Po and ßi switched. A singularity now occurs 

when fc equals a. If the projection point a lies inside the four-dimensional unit sphere, this may 

occur at several orientations. 

. O (13) 

Using equation (1), the condition for a singularity becomes equation (13), where the index I 

stands for the ft parameter which was eliminated. Since the sine function is bounded between ±1, 

a singularity will never occur if N <«. If the projection point a is moved to the sphere surface, 

namely to ±1. then a singularity may occur with a rotation about the i-th body axis only! The 

reason for this is evident in equation (12). Since a is ±1 and the sine function is bounded within 

±1, the only way equation (13) is satisfied is if W « 1. Because , is a unit vector, the other two 

direction components must be zero if N = 1. Thus if the body is spinning about an axis other 

than the i-th body axis, a singularity will never occur. Therefore these asymmetric stenographic 

parameters are attractive for spinning body problems, where an object is rotating mainly about a 

certain axis. The principal rotation angle is now not bounded as with the symmetric stenographic 

parameters, but can grow beyond ±360°. Simply choose the normal of the projection hyperplane 

to be far removed from the rotation axis and place the projection point a on the four-dimensional 

unit sphere surface and the probability of encountering a singularity is virtually nil. 

For both the symmetric and asymmetric stenographic parameters, having the projection point 

on the sphere surface means the singularity can only occur at two distinct orientations. If the 

projection point lies inside the sphere, there generally exists an infinite set of possible singular 

orientations. 

123 



10 

The inverse transformation from asymmetric stereographic parameters to Euler parameters is 

the same as given in equation (6). These asymmetric parameters also exhibit the same shadow 

point behavior as the symmetric parameters do with the same transformation given in equation 

(8). Therefore, if a singular orientation is approached with the asymmetric stereographic 

parameters, one can switch to the shadow point to avoid the singularity. 

Classical Rodrigues Parameters 

The Rodrigues parameters g have a singularity at <E> = ±180°. This corresponds to a point on 

the two-dimensional unit circle in Fig. 1 of (04:1). The corresponding symmetric stereographic 

projection has the projection point a at the origin and the mapping line at ß0 = 1. It becomes 

evident why the classical Rodrigues parameters must go singular at O = ±180° when describing 

them as a special case of the symmetric stereographic parameters. The transformation from the 

Euler parameters to the Rodrigues parameters q is found by setting <D5 = ±180° in equation (3-4). 

The well known result is shown in equation (14) below. 

ttJ- , = ..2,3 (14) 

The inverse transformation from the Rodrigues to the Euler parameters is found by using the 

same <b$in equation (6) and is given as: 

4\+qTq V1+2? 

The differential kinematic equation in terms of the classical Rodrigues parameters is given in 

vector form as: 

g = \(.&-[Ü]q + q&Tq) (16) 

An explicit matrix form of equation (16) is given below [4]. 
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1 
*=2 

l+9l 9i92-939i93
+92 

qzql+q3 1+9* 9293"9i 

939i~92 9392 + 9i     l+«3. 

CO, 

CO. 

CO. 

(17) 

Using the definitions of the Euler parameters in equation (1), the Rodrigues parameters can 

also be expressed directly in terms of the principal rotation angle <D and the principal line of 

rotation g. 

q = (tan— (18) 

From equation (18), it is obvious why the classical Rodrigues parameters go singular at 

±180°. For completeness the direction cosine matrix C is given in explicit matrix form [4]: 

C(qvq2><l3) = 

l+4l+?2 + <73 

1+91-92-«3   2(9l92 + 93)     2(939i"92> 
2 . _2       2 

2(9i92-93)    1-91+ 92 "93   2<9293 + 9i) 
2     _2 ,    2 

2(939i+92)     2(^3-?!)    l-9i-92 + 93 

(19) 

and in vector form [3]: 

J"^ C(q) = —L—ai-q1q)I + 2gq1-2[q)) (20) 

Equation (20) and its inverse can also be written as the Cayley Transform [3,4,6]: 

C(q) = (/-[«]) (/+[«]) 
-l (21a) 

[q]  =  (/-C)(/+Q  l (21b) 

and the kinematic differential equation shown in equations (16-17) has the "Cayley" form [4]: 

i-{'q\ =^(/-[9]Hä](l-(9l) 
dt L 

(22) 
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The tilde matrix [q] is defined by - [g x .„] as given in equation (23). 

lq] = 

0 "93 «2 

«3 0 -1l 

-q2 9l 0 

(23) 

Let the vector / (defined with -g) denote the shadow point of the classical Rodrigues 

parameters. Solving equation (6), or starting with equation (14), the following definition for the / 

is found. 

-ßo     ßo «7 = ZF = ft" = «i i = 1,2.3 (24) 

Equation (24) shows that for the Rodrigues parameters, the shadow point vector components 

are identical to the original Rodrigues parameters, with identical values and properties. Therefore 

the shadow point concept is of no practical consequence in this case; the classical Rodrigues 

parameters are unique! 

circle 

mapping 
line 

Fig. 3.  Original and "Shadow Point" Projection of the Classical Rodrigues Parameters. 

Having the projection point a at the origin causes this elegant, degenerate phenomenon. 

Figure 3 illustrates why both sets of Rodrigues parameters are identical. The classical Rodrigues 

parameters are the only symmetric stereographic parameters which exhibit this lack of distinction 
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between the original parameters and their shadow point counterparts, as is evident below. This 

proves simultaneously to be an advantage and a disadvantage. 

Modified Rodrigues Parameters 

The modified Rodrigues parameters presented by Modi and Tsiotras move the projection point 

to the far left of the unit sphere at (-1,0,0,0) and project the Euler parameters onto the hyperplane 

at ß0 = 0. This pushes the singularity as far away from the zero-rotation as possible. The 

parameters will now go singular at 4 = ±360°. As Tsiotras points out, this new set of parameters 

is able to describe any type of rotation except a complete revolution back to its original 

orientation. Carrying out the stereographic projection with Os = ±360°, the transformation from 

Euler parameters to the modified Rodrigues parameter vector g and the inverse transformation are 

given as: 

Pj ■ _ , * , (25) 

ß=iZ^£       ß.--^L-       « = 1,2,3 (26) 

Using equation (1) again, the modified Rodrigues parameters can be written as [2]: 

<I> 
c = ctan — 4 

(27) 

This formula immediately reveals the singularity at a principal rotation of ±360°, double the 

range of the classical Rodrigues parameters. It is interesting that <D = 0° and O = ±360° 

correspond physically to the same body orientation. This fact has both theoretical and practical 

consequences in "avoiding" the singularity. 

g = i[s>[^)-Ms + B<fs\ (28) 

The kinematic differential equations in terms of g are given in equation (28). They are very 
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similar to equation (16) except for one extra term. This terms makes the equations only slightly 

more complicated, but not any more non-linear. 

The explicit matrix form for the elements of equation (28) is given as [2]: 

5 = 4 

(l + oJ-4-^) 2(a,a2-a3) 2(c,a3 + a2) 

2(0^+ a3) (l-oj + o^-o^) 2(0203-^) 

2(a3o,-o2)        2(a3a2+o,)     (l-cj-o^ + o^) 

00, 

OX 

0). 

(29) 

The direction cosine matrix in terms of the modified Rodrigues parameters [2] can be shown to 

be: 

C(o) = 
(l +s7ff)i 

80. 80j03 + 402X 80203 - 40jL       4 (-05 - 0^+o^) + 3? 

(30) 

or more compactly in vector form as [3]: 

C(0) = I- 
4(1-o7"©) 

(l+o7©) (l + o7©)' 
[0l + ^[01 (3D 

The modified Rodrigues parameter vector 0 is transformed into classical Rodrigues 

parameters as: 

= (l^0> 
(32) 

Naturally, this transformation goes singular at a principal rotation of ±180°, because ||o|| -» 1 

and ||<?|| -»- as <t>->±180°. 

Comparing equation (27) and equation (18) it is immediately evident that both the classical 

and the modified Rodrigues parameter vectors have the direction of the principal rotation vector c, 

but a different magnitude. The transformation from modified to classical Rodrigues parameters 
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shown in equation (32) can be rewritten in terms of the principal angle of rotation <J>. 

2 = 

o 
tan^ 

—Ö* 
tan — 

4 

(33) 

Using the image set -g (r) of Euler parameters, the shadow point of the modified Rodrigues 

parameter vector g is found. 

(34) 

Contrary to the classical Rodrigues parameters, these modified Rodrigues parameter shadow 

points are not numerically equal to the original parameters. While they generate exactly the same 

direction cosine matrix, they are not generally a mirror image of one another. While generally 

g?*-g, note that everywhere on the unit sphere gTg = 1 that, in fact, o5 = -g = -ßr This simple 

observation has significant practical consequences. 

mapping 
line 

Fig. 4.   Original and "Shadow Point" Projection of the Modified Rodrigues Parameters. 

The shadow points o5 have some interesting properties. They go singular at the zero rotation 
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and go to zero at a ±360° principal rotation! This is the exact opposite of the qualitative behavior 

of g. The reason for this behavior becomes evident in Fig. 4. At a zero rotation, the shadow point 

will intersect the mapping line at infinity. At a rotation of ±180° the shadow points will be the 

negative of their original values. We note that f is distinguished from g merely for book-keeping 

purposes. Transforming initial conditions (from [q or _ß) for any given case, could initiate motion 

on either g (r) or g5 (0. 

Using g together with the shadow vector g5, it is possible to describe any rotation without 

singularities and with only three parameters, but with one discontinuity at the switching point If 

the original git) trajectory approaches the singularity at O = ±360°, the vector c(r) can be 

switched to the shadow trajectory fto • This transformation is very simple as is seen in equation 

(34). Rather than waiting until |o(0| -» - or |jf (i)| - ~ to switch, however, the most convenient 

switching surface is the gTg = 1 sphere; the unit sphere which corresponds to a principal rotation 

of ±180°. The Euler parameter ß0 is zero everywhere on this sphere. This causes the shadow point 

to have the same unit magnitude as the original with the transformation being g5 = -g. Thus 

whenever g (r) exits (enters) the unit sphere, g5 (r) enters (exits) at the opposite side of the sphere. 

Fig. 5.   Illustration of the Original and Shadow Modified Rodrigues Parameter. 
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Switching at the fg = 1 surface can be very elegantly accomplished when finding g by 

extracting the Euler parameters from the direction cosine matrix. Simply keep ß0*0 and the 

resulting set of parameters will always have <?o± 1 [1]. Switching on the ß0 = 0 sphere (where 

gTg = o*V = 0 keeps the combined set of original and shadow points bounded within the unit 

sphere. 

This bounded behavior of the combined set is illustrated in Fig. 5 above. The grey line 

represents the s (i) trajectory and the black line the corresponding shadow trajectory of ^(0. 

The motion starts out at a zero rotation with the grey line at the origin and the black line at 

infinity. After a while the principal angle of the object grows beyond 180° and the grey fine exits 

the unit sphere. At the same time the shadow parameters (black line) enter the sphere at the 

opposite position. If the body rotates back to the original orientation, the shadow parameters 

approach zero as the original parameters go off to infinity. Any tumbling motion would give rise 

to a qualitatively identical discussion of g (0 and 5s («). 

Example of Asymmetric Stereographic Parameters 

A sample set of asymmetric stereographic parameter vector g is constructed by eliminating 

the Euler parameter fa and setting a equal to -1. Adjusting equation (4), the vector g is defined as: 

ßo „   -    ß2 „   - A- (35) 

Using equation (11,12) the singular principal rotations about the positive fa axis become *S1 

= -180° and Osl =+540°. As mentioned earlier, the direction at which a singular orientation is 

approached is important with asymmetric stereographic parameters. Here a negative principal 

rotation of 180° about the first body axis causes a singularity. A positive principal rotation of 180° 

would yield an identical physical position, yet causes no singularity. Only after a +540° does this 

representation go singular, even though this position is the same as +180°. This non-symmetric 

principal angle range is due to the fact that the zero rotation point (±1,0,0,0) does not lie on the fa 

axis. 

Differentiating equation (35) and using equation (10), the differential kinematic equation for 

vector r\ is found to be: 
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B = 4 2(Tl3-TliTt2) 2(T\2tl3 + Tli)        (-l+nj-nl + l?) 

-2(n,ii3+i»2>     o-n?-i£+i§>     2(T1,-Vl3)   . 

0), 

(36) 

Note that equation (36) contains no transcendental functions in it and is similar qualitatively to 

equation (29). Because g is an asymmetric stereographic parameter vector, however, there is less 

symmetry in the matrix. This lack of symmetry is linked with the absence of a symmetric 

principal rotation angle range. Therefore, equation (36) cannot be written in a more compact 

vector as was the case with the symmetric stereographic parameters. 

The direction cosine matrix in terms of xj can be found to be: 

C(x\) = 
(l+iW 

4(TI}-H5-T# +z2    8^3+4^2:       -8n,n2+4v: 

-8x1^3 + 4x122    4(xi.2 + xi*-xi3
:)-Z2      8x^3+4x^2: 

8xijXi2+4xi3L 8xi2xi3-4X1,2      4(n 1 -Tl|+n|) -2? 

(37) 

Z=1-XI'TI 

Analogously, asymmetric stereographic parameters could be derived by projecting onto a 

hyperplane orthogonal to the ß2 or ß3 axis, or actually any non-ß0 axis. All .these parameters 

would have a similar singular behavior. 

To illustrate the use of the asymmetric stereographic parameters xj for describing a spinning 

body, a sample motion was generated. The motion was achieved by forcing the following 3-1-3 

Euler angle time history upon the body. 

et(r) =/ 02(0 (I-COS2O2 63(/) = (sin2r)- (38) 

The body is mainly spinning about the third body axis while oscillating about the other two. 

Therefore the stereographic parameter vector xj will never go singular, since a singularity can only 

occur with a pure rotation about the first body axis. 
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■5.00 I II I i 1 I I I i 1 i I i i 1 I i I i 1 l I I 1 1 I I I I 

0 100       200       300       400 
time [s] 

500 600 

Fig. 6.  Spinning Body Description with Asymmetric Stereographic Parameters. 

As Fig. 6 shows, the asymmetric stereographic parameters 3 are smooth and continuous at all 

time. The sample motion shown performs one and a half revolutions without encountering any 

singularity. 

% 

v 

\  JuJL / s 

/ 

/\   y\ 
\X4^J V 

-V 
__0 

y 
/ 

0      2      4      6 

Fig. 7.  Comparison of Symmetric and Asymmetric Stereographic Parameters. 

To compare the asymmetric with the symmetric stereographic parameter description for this 

spinning body the polar plot in Fig. 7 was generated. The magnitude of each parameter vector is 
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plotted versus the principal rotation angle <j>. As expected, the symmetric stereographic parameters 

go singular at certain <J>. while the vector TJ is bounded at all times. 

Figure 8 shows the time history of the principal rotation angle <J> for this spinning body 

maneuver. Because of the oscillations about the first and second body axis. <> gets reduced during 

some portions of the maneuver. Because the magnitude of the symmetric Stereographic 

parameters depends only on the principal rotation angle, these "backing up" phases are not visible 

on the polar plot in Fig. 7. However, the magnitude of the asymmetric Stereographic parameters 

depends on both the principal rotation angle and the direction of the principal rotation axis. This 

explains the more irregular features of the |rj| plot in Fig. 7. 

600.00 

200 300 
time [s] 

600 

Fig. 8.   Principal Rotation Angle Time History of Spinning Body Maneuver 

While some loss in symmetry and elegance of the equations results, asymmetric sets of 

stereographic parameters are able to represent the motion of a spinning body without switching 

between the shadow and the original parameters, like the modified Rodrigues parameters would 

require. In [7] Tsiotras develops a set of orientation parameters which are also well suited for the 

spinning body problem and have a low polynomial degree nonlinearity in their kinematic 

equations. They differ in form to the asymmetric stereographic parameters, but are similar in 

behavior. 
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Globally Stable Control using Modified Rodrigues Parameters 

The combined set of modified Rodrigues parameters and their shadow counterparts lend 

themselves very well for regulator type control design. Adopting the switching surface sfg - \ 

has a surprising benefit in designing control laws. Consider the dynamics of a generally tumbling 

rigid body. The Lyapunov function 

v («. Q) = -</j<>> + 2Klog (l + Jg) (39) 

will not have any discontinuities at the switching surface, since both the original g and its 

shadow g5 point have unit magnitude there! V(o>,g) is by inspection only zero if both « and g 

are zero. As a consequence, it is easy to establish a globally stable Lyapunov controller with a 

three rotation parameter set which never encounters a singularin,'! J in equation (39) denotes the 

3x3 inertia matrix in body axis. The scalar K is a positive feedback gain. For this nonlinear 

regulator type problem, the external control torque u is found by setting the time derivative of 

equation (39) equal to 

v = -Jp<* (40) 

with P being a positive definite matrix, and using equation (28) and Euler's equation of 

motion: 

/cp = - (<ä]/tt>+-u (41) 

to solve for the torque u. Using the logarithm of gTg in equation (39) results in a globally 

nonlinear control law u which is linear in g [2]. 

u = -Pa-Kg + {ü\Jo3 (42) 

The control law in equation (42) is valid for any arbitrary departure motion g. Conventional 

sets of three parameters would encounter singular orientations. Another problem with 

conventional parameter sets is that they have no inherent mechanism to accommodate tumbling 

situations when the object has performed a principal rotation beyond ±180° away from the desired 
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state. When this happens, it would probably be desirable to "help" the object complete the 

revolution, rather than to attempt to force it back the way it came. The only set of parameters that 

can "almost" handle this scenario is the classical set of Rodrigues parameters. They fail because 

they go singular near the "up-side-down" orientation at <D=±180°. The combined set of g and 0s, 

however, are well behaved up to and well beyond <I> = ±180°. Switching at sfg = 1 makes it 

possible for the control law to let the object go past the "up-side-down" orientation and then let it 

rotate back to the origin the short way, as we illustrate in an example below. 

The angular velocity a> feedback is required for global stability, and the P matrix should be 

chosen to achieve satisfactory damping of the nonlinear oscillations. 

The results of a single-axis spin maneuver using the control law in equation (43) are 

presented. The inertia J used was 12000 kgm2; the feedback gains were chosen as K=300 and 

P=1800. Initial angular velocity was +60°/s. Figure 9 below shows the time history of the 

principal angle of rotation. The object clearly spins beyond the "up-side-down" point of O=+180° 

and then returns back to the origin by continuing the motion and completing the revolution. The a 

feedback sufficiently dampens the system to prevent excessive oscillations about the origin. 

0 20 40 60 
time [s] 

80 

Fig. 9.   Principal Angle of Rotation of Spin Maneuver. 

The angular velocity, shown in Fig. 10, decreases steadily from +60°/s and converges to zero. 

Where the O goes beyond 180° there is a discontinuity in the slope of <a. 
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0 20 40 60 
time [s] 

Fig. 10.  Angular Velocity of Spin Maneuver. 

80 

The corresponding external control torque is presented in Fig. 11. A large torque is demanded 

initially because of the large initial angular velocity co. As co decreases, so does the torque. There 

is a discontinuity where the modified Rodrigues parameter switch from the original to the shadow 

point trajectory. This is because the position error g reversed its sign, driving the object towards 

the origin about the other way. However, the control torque does not jump to a negative value 

because of the © feedback. It keeps the torque positive; i.e. the controller is still slowing down the 

spin, even during the switching. 

0 20 40 60 
time [s] 

100 

Fig. 11.   External Control Torque of Spin Maneuver. 

The position error and the associated torque discontinuity due to switching to the shadow 

trajectory may be troublesome for highly flexible bodies. However, this is easily addressed in 

practice by replacing the instantaneous switch by a smooth one. Also, introducing a simple digital 
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filter will effectively smooth out such jump discontinuities. 

It is conceptually easy to introduce a reference trajectory and design analogous tracking-type 

feedback control with, using the methods of [4], global stability guaranteed. This is useful in 

achieving global control shaping, and also to permit selection of feedback gains sufficiently large 

to reject disturbances. 

Conclusion 

A new family of stereographic parameters has been presented, including the general 

transformation from and to the Euler parameters. The general stereographic parameters are not 

unique and have a corresponding set of shadow point parameters whose singular behavior is 

different from the original parameters. 

The classical Rodrigues parameters are a special set of the symmetric stereographic 

parameters where the original parameters and their shadow points coincide. The modified 

Rodrigues parameters are also a special case of the symmetric stereographic parameters. They 

have the largest non-singular principal angle range of ±360°. Their associated shadow points are 

singular at the zero rotation and zero and O = ±360°. This combined set of stereographic 

parameters and their shadow point parameters are able to describe any rotation without 

encountering a singularity, but with one discontinuity. 

The asymmetric stereographic parameters have their singular orientations defined both by an 

axis and a principal rotation angle. The two singular angles do not have equal magnitude as with 

the symmetric stereographic parameter. Asymmetric parameters do allow rotations beyond ±360° 

and are therefore attractive to spinning body type problems. 

The globally stable control law presented implicitly "knows" when an object has rotated 

beyond ±180° from the target state, and to let it complete the revolution back to the desired state. 

This control implicitly seeks out the smallest principal rotation angle to the target state. This 

control law was developed by making use of the modified Rodrigues parameter and their shadow 

points. 
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Abstract 

Three and four parameter representations of 3x3 orthogonal matrices are extended to the gen- 
eral case of proper NxN orthogonal matrices. These developments generalize the classical Ro- 
drigues parameters, the Euler parameters, and the recently introduced modified Rodrigues param- 
eters to higher dimensional spaces. The developments presented are motivated by, and signifi- 
cantly generalize and extend the classical result known as the Cayley transformation. 

Introduction 

It is well known in rigid body dynamics, and many other areas of Euclidean analysis, that the 

rotational coordinates associated with Euler's Principal Rotation Theorem [1,2,3] lead to espe- 

cially attractive descriptions of rotational motion. These parameterizations of proper orthogonal 

3x3 matrices include the four-parameter set known widely as the Euler {quaternion) parameters 

[1,2,3], as well as the classical three-parameter set known as the Rodrigues parameters or Gibbs 

vector [1,2,3,4]. Also included is a recently introduced three parameter description known as the 

modified Rodrigues parameters [4,5,6]. As we review briefly below, these parameterizations are 

of fundamental significance in the geometry and kinematics of three-dimensional motion. 

Briefly, their advantages are as follows: 

Euler Parameters: This once redundant four-parameter description of three-dimensional rota- 

tional motion maps all possible motions into arcs on a four-dimensional unit sphere. This accom- 

plishes a regularization and the representation is universally nonsingular. The kinematic differen- 

tial equations contain no transcendental functions and are bi-linear without approximation. 

Classical Rodrigues Parameters: This three parameter set, also referred to as the Gibbs vec- 

tor, is proportional to Euler's principal rotation vector. The magnitude is tan{§/2), with <}> being 

the principal rotation angle. These parameters are singular at <j> = ±rc and have elegant, quadrati- 
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cally nonlinear differential kinematic equations. 

Modified Rodrigues Parameters: This three parameter set is also proportional to Euler's prin- 

cipal rotation vector, but with a magnitude of tan($l4). The singular orientation is at <J> = ±2TI, dou- 

bling the principal rotation range over the classical Rodrigues parameters. They also have a quad- 

ratic nonlinearity in their differential kinematic equations. 

The question naturally arises; can these elegant principal rotation parameterizations be ex- 

tended to orthogonal projections in higher dimensional spaces? Cayley partially answered this 

question in the affirmative; his "Cayley Transform" fully extends the classical Rodrigues parame- 

ters to higher dimensional spaces [1,2,7]. A proper NxN orthogonal matrix can be generally para- 

meterized by a vector with dimension M = l/2N(N-l). Only for the 3x3 case is N equal to M. Any 

proper orthogonal matrix has a determinant of +1 and can be interpreted as analogous to a rigid 

body rotation representation. This paper extends the classical Cayley transform to parameterize a 

proper NxN orthogonal matrix into a set of M-dimensional modified Rodrigues parameters. Fur- 

ther, a method is shown to parameterize the NxN matrix into a once-redundant set of 

(M+l)-dimensional Euler parameters. 

The first section will review the Euler, Rodrigues and the modified Rodrigues parameters for 

the 3x3 case, generalized later in this paper to parameterize the proper NxN orthogonal matrices. 

The second section will review the classical Cayley transform resulting with the representation of 
a proper orthogonal matrix using the Rodrigues parameters, followed by the new representation 

of the NxN orthogonal matrices using an M-dimensional set of modified Rodrigues parameters, 

and finally, a new representation of the NxN orthogonal matrices using an (M+l)-dimensional 

Euler parameters. 

Review of Three-Dimensional Rigid Body Rotation Parameterizations 

The Direction Cosine Matrix 

The 3x3 direction cosine matrix C completely describes any three-dimensional rigid body ro- 

tation. The matrix elements are bounded between ±1 and possess no singularities. The famous 

Poisson kinematic differential equation for the direction cosine matrix is: 

C = -[(b]C (1) 

where the tilde matrix is defined as 

[o>] = 
0      -CÖ3     0)2 

©3        0-0)i 
-0)2     0)1        0 
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The direction cosine matrix C is orthogonal, therefore it satisfies the following constraint. 

CTC = CCT=I (3) 

This constraint causes the direction cosine matrix representation to be highly redundant. In- 

stead of considering all nine matrix elements, it usually suffices to parameterize the matrix into a 

set of three or four parameters. However, any minimal set of three parameters will contain singu- 

lar orientations. 

The constraint in equation (3) shows that besides being orthogonal, the direction cosine matrix 

is also normal [8]. Consequently it has the spectral decomposition 

C=UAU* (4) 

where U is a unitary matrix containing the orthonormal eigenvectors of C, and A is a diagonal 

matrix whose entries are the eigenvalues of C. The * symbol stands for the adjoint operator, 

which takes the complex conjugate transpose of a matrix. Since C represents a rigid body rota- 

tion, it always has a determinant of +1. 

The Principal Rotation Vector 

Euler's principal rotation theorem states that in a three-dimensional space, a rigid body (refer- 

ence frame) can be brought from an arbitrary initial orientation to an arbitrary final orientation by 

a single principal rotation ($) about a principal line e [3]. 

n3 A 

Fig. 1: Euler's Principal Rotation Theorem. 
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With reference to Fig. 1, the body axis Bt components of the principal line e are identical to 

the spatial components projected onto «,-. 

fe2J=c = C-e (5) 

Therefore e must be an eigenvector of the 3x3 C matrix with a corresponding eigenvalue of 

+1. If the 3x3 C matrix has an eigenvalue of -1, the matrix represents a reflection, not a proper ro- 

tation and the principal rotation theorem does not hold. In this case the det(C) would be +1. The 

principal rotation vector y is defined as: 

Y = $e (® 

Let us now consider the case where a rigid body performs a pure single-axis rotation about the 
fixed e. This rotation axis is identical to Euler's principal line of rotations. Let the rotation angle 

be (j>. The angular velocity vector for this case becomes: 

Co = <j)e ' ' 

or in matrix form: 

[co] = <j>[e] (8) 

Substituting equation (8) into (1), one obtains the following development. 

dt        dt1 

dC       ,_,„ 

c = «,-*[?] (9) 

The last step foUows since the [e] matrix is constant during this single axis maneuver. Due to 

Euler's principal rotation theorem, however, any arbitrary rotation can always be described instan- 

taneously by the equivalent single-axis principal rotation. Hence equation (9) will hold at any in- 

stant for an arbitrary time-varying direction cosine matrix C. However, $ and e must be consid- 

ered time-varying functions. Using the following substitution 

[?]=«>[«] (10) 

equation (9) can be rewritten as [2] 
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=e-m=y-L(-[?]r (ID C 
n=0 

Instead of using an infinite matrix power series expansion of equation (11) to find C, the ele- 

gant finite transformation shown below can be used [2]. That is, the evaluation of «_M does not 

require the spectral decomposition of [y], but can be written directly in term of y itself. Unfortu- 

nately, this transformation only holds for the 3x3 case. A general transformation for the NxN 

case is unknown at this point, at least as far as the authors know. 

g-[Yl = /cos<j> - [e]sin<}) - eeT (cos<}> -1) (12 

4> = UYH. S = Y/4> 

To find the inverse transformation from the direction cosine matrix C to [y] , the matrix loga- 

rithm can be taken of equation (11) to obtain 

[Y]=-logC = ^(/-C)n (13) 

Using the spectral decomposition of C given in equation (4), the above equation can be rewrit- 

ten as 

[y] = -log(UAU*) = - C/(logA)£/* (14) 

where calculating the matrix logarithm of a diagonal matrix becomes trivial. Since all eigen- 

values of an orthogonal matrix have unit norm, the matrix logarithm in equation (14) is defined 

everywhere except when an eigenvalue is -1. Generally, equation (14) will return a [y] which 

corresponds to a principal rotation angle $ in (-180°,+180°). Note however, that when C has ei- 

genvalues of -1, equation (14) does not return a skew-symmetric matrix. The transformation 

breaks down here for this singular event. The geometric interpretation is that a 180° rotation has 

been performed about one axis (leading to one positive and two negative eigenvalues of Q, which 

is the only rotation not covered by the domain of equation (14). 

The principal vector representation of C is not unique. Adding or subtracting 2% from the prin- 

cipal rotation angle <{> describes the same rotation. As expected, equation (11) will always yield 

the same C matrix for the different principal rotation angles, since all angles correspond to the 

same physical orientation. However, the inverse transformation given in equation (14) yields only 

the principal rotation angle which lies between -180° and +180°. 

As do all minimal parameter sets, the principal rotation vector parameterization has a singular 

orientation. The vector is not uniquely defined for a zero rotation from the reference frame. The 
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principal rotation vector parameterization will be found convenient, however, to derive useful rela- 

tionships. 

The Euler (Quaternion) Parameters 

The Euler parameters are a once-redundant set of rotation parameters. They are defined in 

terms of the principal rotation angle (j> and the principal line components e. as follows: 

ßo=cos|, ß,=g/sin|     /=1,2,3 

They satisfy the holonomic constraint: 

ßu>ß5+ß?+ß! = i 

(15) 

(16) 

Equation (16) states that all possible Euler parameter trajectories generate arcs on the surface 

of a four-dimensional unit hypersphere. This behavior bounds the parameters to values between 

+1. However, the Euler parameters are not unique. The mirror image trajectories ß(t) and -ß(t) 
both describe the identical physical orientation histories. Given a 3x3 orthogonal matrix, there 
will be two corresponding sets of Euler parameters which differ by a sign. The Euler parameters 
are the only set of rotation parameters which have a bi-linear system of kinematic differential 

equations [1], other than the direction cosine matrix itself, as follows 

ßo 
ßi 
ß2 

lß3J 

1 
ßo -ßi -ß2 -ßs 
ßl      ßo  ~ß3      ß2 

ß2     ß3     ßo "ßl 
Lß3  ~ß2      ßl       ßo 

0 
COl 

C03J 

(17) 

It is also of significance that the above 4x4 matrix is orthogonal, so "transportation" between 

<o.'s and ßf 's is "painless". The direction cosine matrix in term of the Euler parameters is [1,3] 

[C] = 
ßo + ßi-ß2-ß3   2(ß1ß2+ßoß3)    2(ß!ß3-ßoß2) 
2(ßiß2-ßoß3)   ß§-ßi+ß2-ß3   2(ß2ß3 + ßoßi) 

.2(ßiß3+ß0ß2)    2(ß2ß3-ßoßi)   ßg-ßi-ßi+ßl 
(18) 

The Euler parameters have several advantages over all minimal sets of rotation parameters. 

Namely, they are bounded between ±1, never encounter a singularity, and have linear kinematic 

differential equations if the 0).(t) are considered known. All of these advantages are slightly offset 

by the cost of having one extra parameter. 
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The Classical Rodrigues Parameters 

The classical Rodrigues parameter vector q can be interpreted as the coordinates resulting 

from a stereographic projection of the four-dimensional Euler parameter hypersphere onto a 

three-dimensional hyperplane [6], with the projection point at the origin and the stereographic 

mapping hyperplane at ß = +1. As discussed in [6], it follows that they have their singular orien- 

tation at a principal rotation angle of <f> = ±180° from the reference. Their transformation from 

the Euler parameters is 

9/ = ßo 
1 = 1,2,3 (19) 

Unlike the Euler parameters, the Rodrigues parameters are unique. The q.% uniquely define a 

rotation on the open range of (-180°,+180°) [6]; as is evident in equation (19), reversing the sign 

of the Euler parameters has no effect on the q.. Using equation (15), the classical Rodrigues pa- 

rameters can also be defined directly in terms of the principal rotation angle and the principal axis 

components as 

4,=e,tan^      i= 1,2,3 (20) 

It is apparent that q has the same direction as the principal rotation and the magnitude is 

tan{§/2). The singular condition of <]> = ±180° is evident by inspection of equation (20). The 

kinematic differential equation for the Rodrigues parameters contain a quadratic nonlinear depen- 

dence on the q •. They can be verified from equations (17,20) to be [1-4] 

i+9i   9192-93 9193+92 

q2qi+q3     1 + 9*     9293 ~9l 

U?3<7l-42   4342 +?1       1+^3    - 
lahJ 

(21) 

Notice that the above coefficient matrix is not orthogonal, although the inverse is well be- 

haved everywhere except at <J> = ±180° where \q\ -» <». The direction cosine matrix in terms of 

the Rodrigues parameters is [1-4]: 

'l+9i_«l~d    2(9i92+93)      2(4143-42) 

2(4291-93)    l-q\+ <&-<&    2(4243+91) 

.2(4341+92)      2(4342-41)    1-91-92+93- 

C(q) = 
1 

l+9i+92+93 
(22) 

The Modified Rodrigues Parameters 

The modified Rodrigues parameter vector ö is also a set of stereographic parameters, closely 

related to the classical Rodrigues parameters [2,4-6]. The modified Rodrigues parameters have 
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the projection point at (-1,0,0,0) and the stereographic mapping hyperplane at ßQ = 0. This projec- 

tion results in a set of parameters which do not encounter a singularity until a principal rotation 

from the reference frame of ±360° has been performed. Therefore they are able to describe any 

rotation except a complete revolution ±360°. Their transformation from the Euler parameters is 

a,- 
1 + ßo 

i=l,2,3 (23) 

While the classical Rodrigues parameters have a singularity at ßQ=0 (<j> = ±180°), the modified 

Rodrigues parameters have moved the singularity out to a single point at ßQ=-l (<|> = ±360°). Fig- 

ure 2 below illustrates these two singular conditions. Since the classical Rodrigues parameters are 

only defined for - 180° < <|>< +180°, they can only describe rotations on the upper hemisphere 

of the four-dimensional unit hyper-sphere where ß0>0. However, the modified Rodrigues parame- 

ters can describe any rotation on this hypersphere except the point ßQ=-l. Therefore the modified 

Rodrigues parameters have twice the nonsingular range as the classical Rodrigues parameters. 

4D Unit Hyper-Sphere 
with ßj+ft+ßi+ß^l ß0 = +l 

(Modified Rodrigues 
Parameter singularity point) 

origin 

ßo=° 
(Rodrigues Parameter 
singularity surface) 

Fig. 2.: Illustration of the Singular Conditions of the Classical and 

the Modified Rodrigues Parameters. 

Like the Euler parameters, the modified Rodrigues parameters are not unique. They have an 

associated "shadow" set found by using -ß(t) instead of ß(t) in equation (23) [5,6]. The transfor- 

mation from the original set to the "shadow" set is [2,5,6] 

o? = -r- i=l,2,3 (24) 

The "shadow" points are denoted with a superscript S merely to differentiate them from G/. 

Keep in mind that both dand o5 describe the same physical orientation, similar and related to the 

case of the two possible sets of Euler parameter and the principal rotation vector. It turns out that 
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the modified Rodrigues "shadow" vector 0s (t) has the opposite singular behavior to the original 

vector 5(r). The original parameters have differential kinematic equations which are very linear 

near a zero rotation and are singular at a ±360° rotation. On the other hand, the "shadow" parame- 

ters have differential kinematic equations which are linear near the +360° rotation and singular at 

the zero rotation. [6] Using equation (15), the definition for the modified Rodrigues parameters in 

equation (23) can be rewritten as [4] 

G/ = e/tan— (25) 

Equation (25) is very similar to equation (20), except for the scaling factor of the principal ro- 

tation angle. The singularity at ±360° is evident in equation (25), and small rotations behave like 

quarter angles. All three parameter representations must possess a singularity. This set max- 

imizes the nonsingular principal rotation range to ±360°. The following differential kinematic 

equations display a similar degree of quadratic nonlinearity as do the corresponding equations in 

terms of the classical Rodrigues parameters [4-6] 

A    1 
a = 4 

l + al-ol-cl   2(oiG2-a3)     2(GIG3+G2) 

2(G2GI+G3)    l-af+a|-G^   2(O2G3-GI) 

.   2(G3Gi-G2)        2(G3G2+Gi)      l-c\-ol+öl] 

©2 (26) 
LCÖ3J 

Note that the coefficient matrix of the differential kinematic equation is not orthogonal, but al- 

most. Multiplying it with its transpose yields a scalar (l+crö) times the identity matrix. As 

far as we know, this is the only three parameter representation possessing this elegant property; 

further attesting to the uniqueness and importance of the modified Rodrigues parameterization. 

This almost orthogonal behavior allows for a simple transformation between the ©,• and the G; 

C(ö) = 
T*\2 (l + örö) 

'4(ai-0
2~°3) + z2        8oio2 + 4a3E 8aia3-4a2S 

8a2oi-4o3E      4(-o|+o^-o^) + I2        8a2a3+4aiZ 
8a3ai+4o2E 80502-40!!;       4(-a^-a2

l+o2
1) + 2;2. 

E=l-örö 

(27) 

The direction cosine matrix is shown above [6,9]. It has a slightly higher degree of nonlinear- 

ity than the corresponding direction cosine matrix in terms of the classical Rodrigues parameters. 

Parameterization of Proper NxN Orthogonal Matrices 

A proper orthogonal matrix is an orthogonal matrix whose determinant is +1. Some aspects 

of parameterizing proper NxN orthogonal matrices into M-dimensional Rodrigues parameters 

have been studied recently by Junkins and Kim [1] and Shuster [2].   Keep in mind that M = 
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V2N(N-1). These classical developments, generalizing the Rodrigues parameters to NxN proper 

rotation matrices, date from the work of Cayley [7] and are included below for comparative pur- 

poses with the new representations. 

Any NxN orthogonal matrix abides by the constraint given in equation (3). This equation is an 

exact integral of equation (1), as can be verified by differentiation of equation (3) to obtain 

CTC+CTC = 0 (28) 

The C matrix defined in equation (1) can be shown to satisfy this condition exactly. Substi- 

tute equation (1) into (27) and expand as follows 

(-[©]C)rC+Cr(-[o]C)=0 

(-CT[ä]T)C-CT[ä]C = 0 

cT(-mT-m)c=o 

The above statement is obviously satisfied if [fi>] is a skew-symmetric matrix, e.g. 

[fi>] = - [fi>]r . Consequently equation (1) will generate an NxN orthogonal matrix, as long as 
[fi>] is skew-symmetric and the initial condition C(t=0) is orthogonal. This observation allows 
for the evolution of NxN orthogonal matrices to be viewed as higher dimensional direction cosine 

matrices, somewhat analogous to the motion generated by a "higher dimensional rigid body rota- 

tion," and also suggests parameterization of of higher dimensional rigid body-motivated rotation 

parameters. 

Higher Dimensional Classical Rodrigues Parameters 

Cayley's transformation [7] parameterizes a proper orthogonal matrix C as a function of a 

skew-symmetric matrix Q; these elegant transformations are 

c=(/- ß)(/+ er1 = (/+er1 (/- Q) (29a) 
ß=(/-C)(/+C)"1=(/+C)"1(/-C) (29b) 

The Cayley's transformation is one-to-one and onto from the set of skew-symmetric matrices 

to the set of proper orthogonal matrices with no eigenvalues at -1. Notice the remarkable truth 

that the forward and inverse transformations are identical. The transformation in equation (29b) 

fails if any of the eigenvalues of C are -1, because the I+C matrix becomes singular and is thus 

not invertible. The Cayley transformation in equation (29a) produces only proper orthogonal ma- 

trices C with det(C)=+l. This can be verified by examining the determinant of C as shown below. 

Using equation (29a), det(C) can be expressed as 
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det(C) = det(/- Q)det((/4- Q)~l) = ^(J+ gj 

Since the Q matrix is skew-symmetric, it has purely imaginary complex conjugate pairs of ei- 

genvalues of the form ±i\ Let R be the corresponding eigenvector matrix to Q. Multiplying and 

dividing the above equation by det(R) yields 

det(7?)det(/-0/det(/?)_det(/?)det(/-(2)det(/r1) 
det(C) " det(/?)det(/+ Q)/det(fl)    det(Ä)det(/+ ß)det(/T*) 

det(/?(7- 0/T1) _ dct{I-RQR~l) 
det[R(I+Q)R-1)    det{I+RQR-1) 

where the RQR~l term is a diagonal matrix containing the eigenvalues of the Q matrix. Since 

the determinant of a matrix is the product of all the eigenvalues, the above can be written as 

drt(C)-rBL.(i+a,)(i-a*)"E5L.(1+V) 

where /? is the number of nonzero (imaginary) eigenvalues of Q. The above statement proves 

that all C matrices formed with equation (29a) are indeed proper matrices. For the 3x3 case, let 

the Q matrix be defined as the following skew-symmetric matrix: 

Q = [q] = 
0    -qi   qi 
q3      0    -q\ 

-qi   q\      0 
(30) 

After substituting equation (30) into (29a), it can be verified that resulting C matrix is indeed 

equal to equation (22). Cayley's transformation (29) is a generalization of the classical Rodrigues 

parameter representation for NxN proper orthogonal matrices [1,2], while the Q matrix gener- 

alizes the Gibbs vector in higher dimensions [2,10]. 

Using the [y] matrix defined in equation (14) the Q matrix can be expressed as follows [2]: 

_ ,{[y]\      i in    -uiw m ,  .nix-1 ,o,x ß = - tanhl-^1 = - [e 2 -e J ][e* +e » ) (31) 

The above transformation can be verified by performing a matrix power series expansion of 

equation (31) and substituting it into a matrix power series expansion of equation (29a). The re- 

sult is a matrix power series expansion for the matrix exponential function as expected from equa- 

tion (11). However, equation (12) cannot be used to calculate the matrix exponentials, since this 

equations only holds for the 3x3 case. Note the similarity between equation (31) and (20). Both 
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calculate the Rodrigues parameters in terms of half the principal rotation angle! 

The differential kinematic equations of the C matrix were shown in equation (1), where the 

skew-symmetric matrix [fi>] is related to ßand Q via the kinematic relationship [1] 

[ö>] = 2(/+Q)~1ß(/-ßr1 <32) 

or conversely, Q can be written as 

Q = f(/+ß)[ö](/-ß) <33> 

The equations (32-33) are proven to hold for the higher dimensional case in reference 1. For 

NxN orthogonal matrices, [©] = - [to]7" represents an analogous "angular velocity" matrix. 

Higher Dimensional Modified Rodrigues Parameters 

As is evident above, the modified Rodrigues parameters have twice the principal rotation 

range as the classical Rodrigues parameters. It can be shown that the higher dimensional mod- 
ified Rodrigues parameters also have twice the nonsingular domain as the higher dimensional 

classical Rodrigues parameters. 

To find a transformation from the NxN proper orthogonal matrix C to the modified Rodrigues 

parameters, let us first examine what happens when taking the matrix square root of C. Let the 

square root matrix W be defined by the necessary, but not sufficient condition 

WW=C (34> 

Obviously, for the general NxN case, there will be many W matrices that satisfy equation (34). 

Using the spectral decomposition of C given in equation (4), the spectral decomposition of W can 

be written as 

Since the C matrix is orthogonal, all the eigenvalues in A must have unit magnitude. Keep in 

mind that the A matrix in equation (35) is diagonal and that the matrix square root is trivial to cal- 

culate. Since taking the square root of an eigenvalue with unit magnitude results in another ex- 

pression with unit magnitude, the W matrix itself is unitary, or orthogonal if all entries are real. It 

turns out that W is always real and orthogonal, as long as no eigenvalue of C is -1. If an eigen- 

value of C is -1, then W has complex values and is a unitary matrix. The product of all eigenval- 

ues of C is the determinant of C and must be +1 since C is proper. For even dimensions of C, the 

eigenvalues must all be complex conjugate pairs for the det(C) to be +1. For odd dimensions, the 
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extra eigenvalue must be real and +1 in order for the matrix to be proper. 

Each time a square root is calculated, there are two possible solutions. If the eigenvalue in 

question is one of the complex conjugate pairs, then the sign does not matter for W to be a proper 

matrix. If the matrix dimension is odd, then the root of the extra eigenvalue must be +1 for W to 

be proper. In the 3x3 case there is only one complex conjugate pair of eigenvalues. Hence only 

two W matrices satisfy the above conditions. This is to be expected, since any three-dimensional 

rotation can be described by two principal rotation angles which differ by 2rc, one of which is pos- 

itive and the other is negative. To make the choice of W unique, let us select all the roots of the 

complex conjugate pairs to have a positive real part. 

Since the W matrix is orthogonal, with one exception, it has a principal line and angle asso- 

ciated with it. If the C matrix had an eigenvalue of -1, the same numerical problems arise as we 
encountered with finding the principal rotation vector. Multiplying W with itself in equation (34) 

simply doubles the principal angle, but leaves the principal line unchanged. Therefore W repre- 

sents a rotation about the same principal line as C, but with half the principal angle. This pro- 

vides conceptually elegant interpretations of the square root of C as defined above.. 

For three-dimensional rotations, the simple restriction on the square roots of the eigenvalues 

can be shown to restrict the principal rotation angle to satisfy -180° < <|)< +180°. This choice is 

consistent with many numerical matrix manipulation packages and their computation of a square 

root of a matrix. Let the j-th complex conjugate eigenvalue of C be denoted as e*'6', where the 

the phase is - 180° < 6/ < + 180°. If the dimension N is an odd number, W has the structure 

r,-* 

W=U- 

0 

0 

0 

0 
0 

e '2 

0     0 e +i 

0 

0 
0 

.6 

0 

0 
0 

0 
.6 

0 
0 

0 
0 

0 
0 

IZfcL 
e '  2 

0 

0 

0 
0 

0 

0 
+ 1 

If (36) 

If the dimension N is even, then W is 

W=U- 

e+i2 

0 

0 

0    -    0 
e-*t -.    0 

:    •••    0 
0     0  e+i*-£ 

0 
0 
0 
0 

L   0 0     0     0 e   ' 2   J 

If (37) 

Using the parameterization given in equation (11), the matrix W can also be written directly in 
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terms of the principal rotation matrix [y] as follows 

-l7l 
W=e^T (38) 

This solution for W can be verified by substituting it into equation (34). Comparing equation 

(38) with equation (11) it becomes obvious that the W matrix has indeed the same principle rota- 
tion direction as C, with half the principle angle. Since, for three-dimensional rotations, there are 

two possible principal angles for a given attitude, there are two possible solutions for equation 

(38). Again, by keeping \$\ < 180°, the same W matrix is obtained as with the matrix square root 

method discussed above. 

Remember that the modified Rodrigues parameters have a nonsingular range corresponding 

to |<M < 360°. Since W is the direction cosine matrix corresponding to half of the principal rota- 

tion angle of C, the resulting nonsingular range of the W matrix has been reduced to |<t>| < 180°. 

This is the same nonsingular range as the classical Rodrigues parameters. Therefore the Cayley 

transformations, defined in equations (29a,b), can be applied to W. Let 5 be the skew-symmetric 
matrix composed of the modified Rodrigues parameters, similar to the construction of the Q ma- 

trix in equation (30). Then the transformation from W to S and its inverse are given as: 

W=(I-S)(I+S)-1 =(/+S)"1(/-5) (39a) 

S = (/- WKI+ WT1 = (/+ Wyl (I- W) (39b) 

Using equation (39a) and (34), a direct transformation from S to C is found. 

C=(/-S)2(/+5)"2 = (I+S)~2(I-S)2 (40) 

This direct transformation is very similar to the classical Cayley transform, but no elegant di- 

rect inverse exists (i.e. we lose the elegance of equation (29b); no analogous equation can be writ- 

ten for 5 as a function of Q. This is due to the overlapping principal rotation angle range of 

±360° causing the transformation in equation (40) not to be injective (one-to-one). Since the clas- 

sical Rodrigues parameters are for principal rotations between (-180°,+180°), they have a unique 

representation and the Cayley transform has the well known elegant inverse. 

However, an alternate way to obtain the S matrix from the C matrix is available through the 

skew-symmetric matrix [y] defined in equation (14). 

The transformations given in equation (41) can be verified by performing a matrix power se- 
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ries expansion and back-substituting it into equation (40). Note again the similarity between equa- 

tion (41) and equation (25). The principal rotation angle is divided by four in both cases. 

Either the W or the [y] matrix can be solved from the proper NxN orthogonal C matrix to ob- 

tain the corresponding S matrix. Neither method is as elegant, however, as equation (29b) of the 
Cayley transformation. The method using the [y] matrix has the advantage that [y] is found by 

taking the matrix logarithm of the eigenvalues of the C matrix as shown in equation (14). The 

uniqueness questions do not arise here as in the matrix square root method because solutions are 

implicitly restricted to proper rotations with |<|>| < 180°. Both methods produce the same results 

using, for example, the matrix exponential and matrix square root algorithms available as MAT- 

LAB or MATHEMATICA operators. Note that both the classical and the "updated" Cayley trans- 

form have numerical problems when transforming a proper orthogonal matrix C into a 

skew-symmetric matrix if C has eigenvalues of -1. 

Since each set of modified Rodrigues parameters has its associated "shadow" set [6], it is usu- 

ally not important which S parameterization one obtains, as long as at least one valid S matrix is 

found. Once a parameter set is found, either the original ones or the "shadow" set, it is trivial to 

remain with this set during the forward integration of the differential equations governing the evo- 

lution of 5. 

The differential kinematic equations for S are not written directly from C as they were with 

the classical Cayley transform. Instead W is used to describe the kinematics of the NxN system. 

The relationship between W and S is the same as between C and Q. Therefore the same equations 

can be used. The differential kinematic equation for W is: 

W = -[Cl]W (42) 

where the skew-symmetric matrix [ö>] is: 

[Cl] = 2(1+ S^SV-S)-1 (43) 

or conversely S could be defined as: 

5 = i(/+5)[Q](/-S) (44) 

Equation (34) can be used during the forward integration to obtain C(t). The time evolution of 

C in terms of W and [Cl] is: 

C = -[Cl]WW-W[Cl]W=-[Cl]C-W[Cl]W (45) 

Equating equation (45) and (1), the direct transformation from [Cl] to [fi>] is: 
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[(b] = [Q) + W[Cl]WT (46) 

To verify that equation (46) yields a skew-symmetric matrix  [ö] , the definition of a 

skew-symmetric matrix is used: 

[fi>] = -[co]r =-([Q] + W[Cl)WT)T 

m=-[Ci]T-(wT)T[n]TwT 

[ä) = [ä] + W[£l]WT q.e.d. 

Although this new parameterization is somewhat more complicated than the classical parame- 

terization into M-dimensional Rodrigues parameters, the complications arise only when setting up 

the parameterization in terms of S. Once an S matrix and a corresponding W matrix have been 

found, this method is no different from the classical method. The important improvement is that 

the range of possible principle rotations has been doubled over the classical M-dimensional Ro- 

drigues parameters. 

A Preliminary Investigation of Higher Dimensional Euler Parameters 

The classical Euler parameters stood apart from the other parameterizations, because they 

were bounded, universally nonsingular and had an easy-to-solve bi-linear differential kinematic 

equations. AU of these attractive features were only slightly affected by the cost of increasing the 

dimension of the parameter vector by one. These classical Euler parameters are extended below 

to higher dimensions, where they will retain some, but not all, of the above desirable features. 

The Rodrigues parameters and the Euler parameters are very closely related as seen in equa- 

tion (19). They are identical except for the scaling term of ß0. The classical Rodrigues parame- 

ters have been shown to expand to the higher dimensional case where they parameterize a NxN or- 

thogonal matrix C [1]. Analogous to equation (19), they can always be described as the ratio of a 

once-redundant set of parameters. 

9.k      ,-=1,2,3,...,M = ^pI) (47, 
Po z 

The skew-symmetric matrix Q in equation (29a) can be written as: 

Q=±-B (48) 
Po 

where B is a NxN skew-symmetric matrix containing the numerators ß/ of Q. For the three 

dimensional case, this matrix is the "vector" part of the classical Euler parameters ßr ß2, ß3, and 
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has the familiar structure 

B = 
0    - ß3    ß2 
ß3      0    -ß! 
-ß2   ß!      0 

(49) 

Substituting the transformation relating Q to {ß0,ßr..,ßMl, as given in equation (48) the Cay- 

ley transform of equation (29a) results in the following 

C=(ß0/-ß)(ßo/+ß)_1 

C(ß0/+ß) = (ßo/-ß) 

(/-C)ßo-(/+C)B = 0 (50) 

Equation (50) represents an NxN system of linear equations in {ß0>ßr-->ßM}-   Let the 

[N2x(M+l)] matrix A represent the linear relationship between the ßj 

ßo 
ßi 

LßAfJ 

= 0 (51) 

Clearly the set of all possible higher dimensional Euler parameters spans the kernel of A. We 

know that the M Rodrigues parameters are a minimal set to parameterize the orthogonal NxN ma- 

trix C. By adding the scaling factor ßQ, a once redundant set of parameters has been generated. 

Even though there are N2 linear equations in equation (50), the dimension of the range of A is 

only M. The problem is still under determined. The dimension of the kernel of A must be one, 

since only one additional term was added to a minimal set of rotation parameters. The solution 

space is a multi-dimensional line through the origin. 

Multi-Dimensional 
Unit Sphere 

Fig. 3: Solution of the Higher Dimensional Euler Parameters. 
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After finding the kernel base vector, an infinite number of solutions still exist. Another con- 

straint is needed. Let us set the norm of the higher dimensional Euler parameter vector to be 

unity. This concept is illustrated in Fig. 3 above. 

ß5 + ß? + - + ß*r = l (52) 

Equation (52) is the higher dimensional equivalent of the holonomic constraint of the classi- 

cal Euler parameters introduced in equation (16). 

Two solutions are found scaling the base vector of the kernel of A to unit length. Just as with 

the classical Euler parameters, any point on the multi-dimensional Euler parameter unit sphere de- 

scribes the same physical orientation as its antipodal pole. Therefore the higher order Euler pa- 

rameters are not unique, but contain a duality. This is exactly analogous to the classical case. 

This duality does not pose any practical problems, except under one circumstance discussed 

below. 

C=(ß0/-ß)(ßo/+ß)_1 =(ßo/+ß)"1(ßo/-ß) <53) 

The inverse transformation from higher order Euler parameters to the orthogonal matrix C is 

found by using Q from equation (48) in the classical Cayley transform. The result is shown in 
equation (53). Using a B, as shown in equation (49) for the three-dimensional case, in equation 

(53) results in the same transformation as given in equation (18). Observe that the inverse trans- 
formation has a singularity when ßo is zero. This singularity is a mathematical singularity only. 

Contrary to the Rodrigues parameters, the higher order Euler parameters are well defined at this 

orientation. After an appropriate skew-symmetric matrix B is constructed and carrying out the al- 

gebra in equation (53), a closed form algebraic transformation is found 

For the 2x2 case, the B matrix is given by 

(54) MS. o   -ßil 
0 

Using the B defined above in equation (53), the 2x2 direction cosine matrix C is: 

r ßo - ß?   2ßoßo 
C2x2 = 

-2ßoßo ßg-ß? 
(55) 

The 2x2 C matrix contains no polynomial fractions and is easy to calculate. To find the direc- 

tion cosine matrix for the 3x3 case, use the B matrix defined in equation (51) in equation (53). 
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^3x3 = Po(ßg+ß?+ßi+ß|) 

ßo(ß§ + ß?-ßi-ßl)     2ßo(ß1ß2 + ßoß3) 2ßo(ßiß3-ßoß2)   ' 
2ßo(ßlß2-ßoß3)      ßo(ß§-ß?+ßl-ßi)     2ß0(ß2ß3+ß0ßl) 

.   2ßo(ßiß3+ßoß2) 2ßo(ß2ß3-ßoßl)      ßo(ßg-ß?-ßl + ßi) 

After making the obvious cancellations and enforcing the holonomic constraint equation, the 

well known result is found which represents the 3x3 direction cosine matrix as a function of the 

classical Euler parameters as given in equation (18). This classical representation contains no 

polynomial fractions and no singularities, just as was the case with the 2x2 system. 

For dimensions greater than 3x3's, however, the algebraic transformation contains polynomial 

fractions. The nice cancelations that occur with a 2x2 and a 3x3 orthogonal matrices do not occur 

with the higher dimensions. This might have been anticipated, because [2] it is well-known that 

quaternion algebra does not generalize fully to arbitrary higher-dimensional spaces, and the ele 

gant classical Euler parameter results are essentially manifestations of quaternion algebra. To 

find C4X4 in terms of the higher dimensional Euler parameters, we define the 4x4 B matrix as: 

#4*4 = 

0 -ß6 ß5 -ß4 

ß6 0 -ß3 ß2 

-ß5 ß3 0 -ßi 
L   ß4 -ß2 ßi 0 

(56) 

and substitute it into equation (53), this leads to 

QJC4 =' 

ßo(ßo + ßi + ßl + ßl - ßl - ßl - ßl) -§2      2ß0(ßo(ß2ß4 + ß3ß5+ßoß6) + ßl8) 
2ßo(ßo(ß2ß4 + ß3ß5-ßoß6)-ßi5)   ßg(ßg + ß? - ßi - ßi + ßl+ßi - ßi) -s2 

2ßo(ßo(ßlß2-ßoß3+ß5ß6)-ß48) 
2ßo(ßo(ßlß3 + ßoß2-ß4ß6)-ß55) 

2ß0(ßo(ßoß4-ßlß5-ß2ß6) + ß35) 
2ß0(ßo(ßlß3-ßoß2-ß4ß6) + ß55) 
2ßo(ßo(ßoßl+ß4ß5+ß2ß3) + ß65) 

(57) 

2ßo(ßo(ßoß5 + ß3ß6-ßlß4)-ß25) 
L   2ßo(ßo(-ßoß4-ßlß5-ß2ß6)-ß35) 

2ß0(ßo(-ßoß5 + ß3ß6-ßlß4) + ß25) 
2ßo(ßo(ßlß2 + ßoß3+ß5ß6) + ß45) 

"* ßg(ß8 - ß? + ßi - ßi + ßi - ßi + ßi) - s2 

2ßo(ßo(-ß0ßi + ß4ß5 + ß2ß3)-ß65)  ß§(ß§ - ß? - ßi + ßi - ß3 + ßi + ßi) -s2 J 

With   8 = ß3ß4 + ßlß6-ß2ß5 
A=ßg + 52 

This denominator A can vanish for several ß. configurations. Observe, however, that when- 

ever A is zero, so is the numerator. For each singular case we can confirm that a finite limit ex- 

ists, as was to be expected, since the original orthogonal C matrix was finite. In all cases ßo = 0 

is a prerequisite for a (0/0) condition to occur. Finding the transformations for matrices with di- 

mensions greater than 4x4 would show the same behavior. ß0 = 0 is always a indicator that a 

mathematical singularity may occur. In none of these cases are the higher dimensional Euler pa- 

rameters themselves actually singular. It is always a mathematical singularity of the transforma- 

174 



20 

tion itself. To circumvent this problem for particular applications, the limit of the fraction can be 

found as ßo -» 0. After substituting ß0 = 0 into equation (57), for example, most fractions be- 

come trivial and the matrix is reduced to 

C4x4 = 

r-1 0 0 0 
0-100 
0    0-10 

L  0    0    0-1 

= -/4,4 (58) 

Substituting ßo = 0 into equation (55) yields the same result. Actually, as long as C is of even 

dimension the matrix will be -/ if ßo = 0. If the dimension is odd, as it is for the 3x3 case, the C 

matrix will be fully populated. With this observation it is easy to circumvent the singular situa- 

tions if the dimension is even. If the dimension is odd a numerical limit must be found. In either 

case the transformation will be well behaved everywhere except the ßo = 0 surface. The fact that 

the 0/0 condition can be resolved analytically to obtain finite limits should not obscure the frus- 

trating fact that these 0/0 conditions would pose numerical difficulties in general numerical algo- 

rithms. 

Let us examine the uniqueness of the transformation given in equation (53). Assuming that 

the transformation is not unique, two possible higher dimensional Euler parameter sets ßand ß 

are chosen, these parameterize C as 

c = (ß0/-5)(M+ß)_1 

C = (py+£)-1(M-5) 

Subtracting one equation from the other the following condition is obtained: 

o = (ßo/-^)(M+ß)"1-(M+5)-1(ßo/-^) 

0={$0I+B){%I-B)-{%I-B){%I+B) 

o=M-M 

or 

A = JL (59) 
ßo    ßo 

Equation (59) is the necessary condition for two higher order Euler parameter sets to yield the 

same direction cosine matrix C. Obviously, for ßo * 0 this can only occur when 

175 



21 

ß = k* (60) 
ßo=*-ßo 

where it is a scalar. This condition apparently yields an infinite number of solutions. But 

since the higher dimensional Euler parameters must satisfy the holonomic constraint given in 

equation (52), only unit scaling values of Jt are permissible. Therefore k must be either ±1. The 

above uniqueness study results in exactly the same duality as is observed with the classical Euler 

parameters, except the restriction on ß0 * 0. There are always two possible sets of classical Euler 

parameters which describe an orthogonal 3x3 matrix C. It is evident that this truth extends to the 

more general case of NxN orthogonal matrices . This duality was seen earlier when applying the 

holonomic constraint to the kernel of A. 

CNxN[Mt)] = CNxN[-W)) (61) 

Based on the above, if ß0 = 0 nothing can be said about the transformation uniqueness. As 

was seen with the 4x4 C matrix, the ß0 = 0 condition permits any point on the unit sphere 

Having established the forward and backward transformations between the NxN orthogonal 

matrices and the higher order Euler parameters, their kinematic equations are also of interest. To 

describe the orthogonal matrix C as a generalized rigid body rotation, C must satisfy a differential 

equation of the form given in equation (1). After substituting equation (48) into equation (33), Q 

is 

o-sKHK) 
After differentiating equation (48) directly, Q is found to be 

Q = M-M ' (63) 
ft 

Upon substituting equation (62) into equation (63) and after making some simplifications, the 

following kinematic relationship is found. 

ßoß-M = ^(ßo'+£)[ü](ßo/-5) (64) 

This equation can be solved for the skew-symmetric angular velocity matrix [co]. 

[Ö] = 2(ß0/+ BTl (ßoß - M)(M- B)~l (65> 

Note that this equation contains the same mathematical singularity at ßo =0 as did equation 
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(53). Carrying out the algebra a closed form algebraic equation is found for the higher order an- 

gular velocities. 

Let us verify that equation (65) for the angular velocities does indeed generate a 

skew-symmetric matrix. This is easily accomplished using the definition of a skew-symmetric 

matrix as follows 

[ä)]=-[ö]r=-2((ßo/+ßr1(ßoß-M)(M-^r1)r 

[ä]=-2(ßo/-ßrir(ßoß-M)r(ßo^+ßrir 

[ö]=-2(ßo/r-ßr)"1(ßoßY-Mr)(ßo/ir+^)""1 

Since the matrix B and its derivative are skew-symmetric matrices by definition, further sim- 

plifications are possible to obtain the following result 

[Ö3]=-2(ß0/+ß)"1(-ßoß + M)(ßo/-ßr1 

[rä]=2(ßo/+ß)"1(M-M)(ßo^-'Br1    9-e.d. 

All higher order Euler parameter differentials must abide by the derivative of the constraint 

equation (52). 

2ß0ßo+2ß1ßi + ...+2ßMßAf=0 (66) 

After using the B from equation (49) the linear differential kinematic equations of the classi- 

cal Euler parameters are found. To verify that equation (65) generalizes correctly, known classi- 

cal results let us verify two special cases. For the 2x2 case, a scalar differential kinematic equa- 

tion results from equation (65) as 

coi=2[-ßi ß0] ßo 
ßi 

(67) 

Adding the constraint in equation (66), equation (67) can be padded to make it full rank. 

[SJ-2 ßo   ßi 
l-ßi ßo 

ßo 

ßlJ 
(68) 

Note that as with the 3x3 case, the matrix transforming ß to co is orthogonal for the 2x2 case. 

Therefore the inverse transformation can be written as: 

■ßo" 

Lßi. 
[ßo -ß, 
lßi   ßo JLc°i [&] (69) 
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It is straight forward to show that equations (65) and (66) give equation (17) for the 3x3 case. 

Analogous to the 3x3 case, the above differential kinematic equation for the 2x2 case is also 

bi-linear. As with the 4x4 and greater direction cosine matrices, for proper orthogonal matrices 

having dimensions greater than 3x3 the higher dimensional differential kinematic equations also 

contain polynomial fractions. Using the B matrix from equation (56) in equation (65) and collect- 

ing all the angular velocity term, we find the differential kinematic equations for the 4x4 case 

Aß0 Aß, Aß2 

ß6(ß2ß5-ß3ß4)-ßl(ßS + fö) ßo(ßo + ßl) ßo(ßoß3-ß5ß6) 
ß5(ßlß6 + ß3ß4)-ß2(ßS + ßl)   -fcCßofc+ßsfc) ßo(ßS + ß!) 
ß4(ß2ß5-ßlß6)-ß3(ß20 + ß5)     ßo(ß4ß6 + ßoß2)     " ßo(ßoßl + ß4ßs)  - 
ß3(ß2ß5-ßlß6)-ß4(ßB + ß!)   ßo(-ßoß5 + ß3ß6)   -ßo(ßoß6+ß5ß3) 
ß2(ßlß6+ß3ß4)-ß5(ß5 + ßi)      ßo(ßoß4-ß2ß6)        fcCfcfc + ßlfc) 
.ßl(ß2ß5-ß3ß4)-ß6(ß20 + ß?)      ßo(ß2ß5-ß3ß4)        ßo(ßoß4-ßlß5) 

Aß3 Aß4 Aß5 Aß6 ifßol     (70) 

ß0(ß4ß6-ßoß2)        ß0(ßoß5 + ß3ß6)     -ßo(ßoß4+ß2ß6)      ßo(ß2ß5 " ß3ß4) 
ßo(ßoßl-ß4ß5)        ßo(ßoß6-ß5ß3)        ßo(ß3ß4 + ßlß6)     " ßo(ßoß4 + ßl ß5 ) 

ßo(ß20 + ß4) ßo(ß2ß5-ßlß6)        ßo(ßoß6-ß2ß4)        ß0(ßlß4-ßoß5) 

ßo(ß2ß5-ßlß6) ßo(ßE + ßi) ßo(ßoßl-ß2ß3) 

-ß0(ßoß6 + ß2ß4)   -ßo(ßoßl+ß2ß3) ßo(ßg + ßD 

ßo(ß1ß4+ßoß5)      ßo(-ß0ß2 + ßlß3)   -ß0(ßoß3 + ßlß2) 

vWtfIA = ß2, + (ß3ß4-ß2ß5+ß1ß6)
2 

" 

f0 1 
©1 
©2 1     2 
CO, 
(04 

A 
C05 

lov 

ßo(ßoß2 + ßiß3) 

ßo(ßoß3"ßlß2) 

ßo(ßS + ß?) 

ßol 

ß. 
ß2 

ß3 

ß4 

ß5 

lß6J 

Note that this transformation matrix is no longer orthogonal as were the corresponding ma- 

trices for both the 2x2 and 3x3 cases. The bi-linearity found for 2x2 and 3x3 cases is also lost for 

the higher dimensional cases. Equation (70) has the same denominator as the 4x4 direction co- 

sine matrix. Hence it contains the identical singular situations. However, if ßo = 0, the above 

transformation matrix is singular and cannot be inverted! 

Thus the higher dimensional Euler parameters lose some key properties as they are general- 

ized to parameterize higher dimensioned proper orthogonal matrices. They retain the properties 

of being bounded and mapping all rotations onto arcs on a unit hypersphere. However, the kine- 

matic transformations and orthogonal matrix representations loose the elegance of their classical 

3x3 counterparts. In particular, ßo = 0 poses several unresolved issues for all dimensions higher 

than 3x3. 

Conclusion 

The principal rotation parameterizations presented show great promise as an elegant means 

for describing the evolution of NxN orthogonal matrices. The modified Rodrigues parameters are 
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only slighüy more complicated than their classical counterparts, but double the nonsingular rota- 

tion domain The (M+l)-dimensional Euler parameters retain some of the desirable features of 

their classical counterparts. However, for orthogonal matrices greater than 3x3 though, the or- 

thogonal matrix representation formulas and the corresponding differential kinematic equations 

contain some mathematical singularities which require taking the limits of polynomial fractions. 

The computational effort for calculating the higher dimensional Euler parameters grows rapidly 

when increasing the dimension of the C matrix. For higher dimensional rotations, the modified 

Rodrigues parameters show the greatest promise. The gain (increased nonsingular domain in 

comparison to the classical Cayley transformation), significantly outweighs the extra computa- 

tion. 
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Introduction/Motivation 

Consider the Optimal Control Problem: 
Find u(t) such that  the solution of 

x = f(t,x,u)  ,x(t0) specified 

extremizes 

j = (|)+ JF(t,x,u)dt 
ti 

subject to 

Two Approaches to Solution : 

. Function Space Approach 
Take Variation 

=> Pontryagin's Principle & TPBVP 

• Parameterize u(t) = f(twllw2l—,wm) 
Optimize (w1)w2)-,wm) 

via Nonlinear Programming 
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RBF Approximation Algorithm 

Consider the System of 

x = f(t,x,u) 
with radial basis function approximation 

i(t-xr 

u = 5>,e 2\ai 

i=1 

Then the system becomes 

x = f(t,x,w) 

Let's consider the matrix of partial derivative. 

*(t,t0) =        W 

9w 

which satisfies 

l^(t,t0)] = [A(t)][^t,t0)] + 
af(t,x,w) 

,[^(to.to)] = [0] 

where 

[A(t)] = 
df(t,x,w) 

ax(t) 
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Thus, the original system can be represented 
by augmented system 

z = r(t,x,w) 

where 

z = 
¥ 

r(t,x,w) = 
f(t,x,w) 

of' 
ax 

T+ 

The solution to this dynamical system ; 
Ay = A Aw 

We use minimum norm correction algorithm. 
Aw = AT(AAT)_1Ay 

where 

A = 

and 

[>] " ay " px(tf)l " ay " 
_5w _ax(tf)J ow [ax(tf)J 

r>f,(t,r 
Ay: 

_v,'(t,)_ 

^(tf.O) 
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A Step size limitation filter according 
to the value of Aw is used as follows; 

wnew = wold + Aw 

where 
Aw| = v AwTAw 

If Aw < s for acceptably small e, then 

Aw= AT(AAT)_1Ay 

else if Aw > e for acceptably small e, then 

AT(AAT)_1Ay Aw = 
Aw 
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Even after the terminal constraints are met 
we generally do not know whether how near 
the performance is to optimal. 
To drive the performance value toward the 
optimal, we introduce a homotopy concept. 

J0 = X J   + (1 - X) Jcurrent 
Since the homotopy concept is used to treat 
the performance index (J0) as an additional 
equality constraint, we modify Ay as follows; 

M/i(tf) 

Ay = 
M^Ctf) 

current Jo-J 

For adaptively spaced RBF algorithm 
we check the sensitivity of the terminal 
constraints and the performance index 
w.r.t. parameters as follows; 
we form the augmented Jacobian 
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A = 

öv|/1     d\\f} 

dw.,    dw2 

dv|/, 

öw1 

öw1 

dw2 
d\\)2 

dw2 

avi/2 

•                           • 

^Vq dVq 

•                             • 

ÖVKq 

dW N. 

= [A1fA2j-,AN] 

The A, vector is the gradient of the constraint 
and performance index w.r.t. Wj. 
Adopting the positive measure of the sensitivity 
w.r.t. ith parameter as 

Sj = Aj   Aj 
we introduce a new RBF according to Sj. 
With the newly added RBF we increment X 
to obtain a new J0 and follow the same 
procedure until a small increase(AA,min) 
cannot be achieved, while satisfying all 
constraints within a tolerance. 
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START 

Initial  w, T, ö   | 

x = f(t,x,w) 

VF = 
öf" 

öx 
x¥ + 

A = 
'ÖY' 

ar 

ÖY 

[ax(tf)J 

new = wold + AT(AAT)"1AY 

^(tf),   Y = 

M>i 

3V 

x = f(t,x,w) 

A = 
ÖY" ÖY 

Löx(tf)J 

y = 
ax 

¥+ öf_" 
_aw. 

aY 
ax(tf)j 

^(tf), Y = 
Vq 

_^o ""^current. 

wnew = wold + AT(AAT)"1AY 

T     Yes 
(   STOP] 
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EXAMPLE 

t = tf 

Attracting 
Center 

Fig. 1 Maximum Radius Orbit Transfer in a Given Time 

The differential equations of the system 

r = u, r(0) = r0 

v2    \x      Tsin<j) 
u = ~ + 

r     r mo- rn 

,u(0) = u0 

t 

; = _uv+ Tcosfr     v(0) = Ji 

r     ...      Ax f0 mo- rn 

The terminal constraints : 
V, = u(tf) = 0 
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Evenly Spaced Radial Basis Function Algorithm 

x10" 

-o 
E4 

lamda vs. # of Evenly Spaced R.B.F.s 

r(tf) vs. # of Evenly Spaced R.B.F.S 
rO.. .0.. .1.. .0.. .0.. .0. ..Q..Q...Q..Q..Q..Q..Q 

10 15 
# of Evenly Spaced R.B.F.s 

Fig. 2 A and r(tf) vs. time for Evenly Spaced R.B.F. Algorithm 
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Adaptively Spaced Radial Basis Function Algorithm 

0.08 r 

0.06 
«a 
E0.04 

0.02 

1.52r 

1.5 

— 1.48 
4—« 

1.46 

1.44 

lamda vs. # of Adaptively Spaced R.B.F.s 

 n 
- % ■ 

 1 ,     I 

i 

? :       :                           : 
\                           :                            :                             ; 

i »                       :                           :                           : 
»                      i                           :                           : 

o 

®.                    :                           :                           : \                                              :                           '. 
1 -&-C-f-&.fl ■-o-<r>_ <fc,. o—-.    o    0—6    0    0    O    0    O 
5 10 15 20 

r(tf) vs. # of Adaptively Spaced R.B.F.s 

25 

..^..■^-.H>. .Q...;.. o. ■ O-' <p..O-t O-O- >0- C 

5 10 15 20 
# of Adaptively Spaced R.B.F.s 

25 

Fig. 5 A and r(tf) vs. for # of Adaptively Spaced R.B.F.s 
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Fig. 6 <j) vs. time for Adaptively Spaced R.B.F. Algorithm 
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Fig. 7 r(tf) vs. time for Adaptively Spaced R.B.F. Algorithm 
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Comparison of Two Algorithms 

lamda vs. Number of Parameters 
0.08 

0.06 

x> 
E0.04 

0.02 

-^—r 

o-.o: Adaptively Spaced R.B.F.s 
*- *: Evenly Spaced B-B-Rs 

1       •       . * • 

10 15 20 25 

r(tf) vs. Number of Parameters 

o-.o : Adaptively Spaced R.B.F.s. 
*--'*': EyenTy Spaced R.B.F.S 

10 15 
Number of Parameters 

20 25 

Fig. 8 A and r(tf) vs. time for Two Algorithm 
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CONCTJIDTNG REMARKS 

Radial Basis Function (RBF) Methods   Investigated 
To Parameterize Function Space Optimal 
Control Problem 

Two Variations Studied 
. Evenly Spaced Centers 
. Adaptive Centers 

Minimum Norm Nonlinear Programming Algorithm 
Used To Iteratively Adjust RBF Weights 

. Applied These Ideas to Low - Thrust 
Interplanetary Trajectory Optimization Problem 

. Our Algorithms Have Been Fully Validated ! 
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Abstract 

In this paper we generalize some previous results 
on attitude representations using Cayley transforms. 
First, we show that proper orthogonal matrices, that 
naturally represent rotations, can be generated by a 
form of "conformal" analytic mappings in the space 
of matrices. Using a natural parallelism between the 
elements of the complex plane and the real matrices, 
we generate higher order Cayley transforms and we 
discuss some of their properties. These higher order 
Cayley transforms are shown to parameterize proper 
orthogonal matrices into higher order «Rodrigues" 
parameters. 

1.  Introduction 

The question of the proper choice of coordinates for 
describing rotations has a very long and exciting his- 
tory. Starting with the work of Euler and Hamilton 
a series of different parameterizations were intro- 
duced by several researchers during the past hun- 
dred years. We will not delve into these results here 
since they can be found in any good textbook on 
attitude representations1'2. We just mention the re- 
cent survey article by Shuster3 in the special issue 
in Ref. [4]. 

In this paper we take a slightly more abstract 
point of view than the previous references. Our 
main objective is to "unify" some of the existing 
results in the area of attitude representations. It 
is hoped that this global view will add to the cur- 
rent understanding of attitude representations. Our 
motivation stems mainly from the recent results on 
second order Rodrigues parameters5,6,7. In partic- 
ular, in Ref. [7] it was shown that these (Modified) 
Rodrigues parameters can be generated by a second 

•Assistant Professor, Department of Mechanical, 
Aerospace and Nuclear Engineering. Member AIAA. 

'Eppright Professor, Department of Aerospace Engineer- 
ing. Fellow AIAA. 

'Graduate Student, Department of Aerospace Engineer- 
ing. Student member AIAA. 

order Cayley transform, the same way the classical 
Cayley-Rodrigues parameters are generated by the 
Cayley transform8. Viewing the Cayley transform 
as a bilinear transformation which maps the space 
of skew-symmetric matrices onto the space of proper 
orthogonal matrices (and vice versa) one is naturally 
led to the notion of conformal mappings (a gener- 
alization of the bilinear transformation) from the 
imaginary axis onto the unit circle (and vice versa). 
We seek to generalize these conformal mappings to 
matrix spaces. Drawing on the insightful statements 
by Halmos9 we show that such an intuitive gener- 
alization is indeed possible.  We are therefore able 
to generate the Euler parameters, the Rodrigues pa- 
rameters and the Modified Rodrigues parameters as 
special cases of such conformal mappings. Higher or- 
der Rodrigues parameters can be easily constructed 
using this approach, although their relevance to ap- 
plications is still to be determined.   We explicitly 
develop the third and fourth order "Rodrigues pa- 
rameters" in order to illustrate potential advantages 
as well as difficulties. The question of kinematics of 
these higher order "Rodrigues parameters" is much 
more subtle and is briefly discussed at the last sec- 
tion of the paper. A more in-depth discussion of the 
kinematics is left for future investigation. 

The first part of the paper reviews the standard 
Cayley transform and it generalizes this transform 
to higher orders. There is no restriction on the di- 
mension of the matrices involved, i.e., the results 
hold for n x n matrices. In the second part of the 
paper we apply these results to the case of interest 
to attitude dynamicists, i.e., the case n = 3. 

Some notation and terminology is necessary in 
order to keep the discussion clear and terse. We 
use the standard mathematical notation SO(n) to 
denote the space of proper orthogonal matrices of 
dimension nxn. Invertible nxn matrices form the 
space Gl(n), the general linear group. The space 
of orthogonal matrices is denoted by 0{n) and it is 
the set of all (invertible) matrices A G Gl(n) such 
that ATA = AAT = I.  Clearly, if A G 0(n) then 

1 
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det(A) = ±1-   The qualifier "proper" then refers 
to those orthogonal matrices with positive determi- 
nant, that is, 

SO{n) = {Ae Gl[n) : AAT = I,   det(A) = +1} 

These matrices represent rotations, while the or- 
thogonal matrices with determinant -1 represent refle- 
ctions10. The space SO(n) (as well as Gl{n) and 
0(n)) forms a group. We will see later on that 
one can define a differential equation for elements 
of SO{n). The solutions of this differential equa- 
tion form trajectories (one-parameter subgroups) on 
SO(n) and this differentiate structure makes SO(n) 
actually a Lie group (i.e. a group with a differen- 
tiable manifold structure). 

The space of n x n skew-symmetric matrices will 
be denoted by so(n) That is, 

so(n) = {AelRn*n:A = -Är} 

The space so{n) is actually the tangent vector space 
to SO(n) at the identity. This property can be easily 
verified by differentiating A G SO{n). Since AA = 
I one has that 

The inverse transformation is not defined when C 
has an eigenvalue at -1, because in this case ciet(7+ 
C) = 0. Since C is orthogonal, all its eigenvalues lie 
on the unit circle 

S1 = {(n,x2)€lR2 *| + xl = l} (4) 

Therefore sp{C) C S1, where sp{-) denotes the spec- 
trum of a matrix, and the transformation (3) re- 
quires that -1 g sp{C). The same result is also 
shown in Ref. [7]. 

It is an easy exercise to show that C is orthog- 
onal if Q is skew-symmetric. In order to show that 
the transformation (2) produces only proper orthog- 
onal matrices, let us examine the determinant of C 
Using Eq. (2) the determinant of C can be expressed 

AT ±(AAT)=Q&ÄAT = -AÄ 
at 

Evaluating the previous expression at A 
obtains that 

= I one 

A=I 
= -AT 

A=I 

and so A\       is skew symmetric. 
\A=I 

2.  The Cayley Transform 

Cayley's transformation parameterizes a proper or- 
thogonal matrix C as a function of a skew-symmetric 
matrix Q. It is, therefore, a map 

i>: so{n) -* SO(n) (1) 

The classical Cayley transform8 is given by 

c = HQ)  =  V-QW + QT1 

= V + QTHi-Q) (2) 

Since Q is skew-symmetric all its eigenvalues are 
pure imaginary. Thus, all the eigenvalues of the ma- 
trix 1+Q are nonzero and the inverse in Eq. (2) ex- 
ists. The Cayley transform is therefore well-defined 
for all skew-symmetric matrices. The inverse trans- 
formation is identical and is given by 

Q = i>-1{C) = HC)   =   (i-CKi + c)-1 

= {i+cy\i-c) (3) 

as 

det(C)   =   det(I-Q)det{{I + QTl) 

det(I-Q) {5) 

"~    det{I + Q) 

Since all the eigenvalues of Q are imaginary {sp{Q) C 
O) they are of the form ±:'A;-. The spectral decom- 
position of the matrix Q then yields 

Q = R~*AR 

where A = diag{±i\j). (The matrix Q is normal 
and normal matrices are always diagonalizable11.) 
Noting that I±Q = R-\I±A)R we rewrite Eq. (5) 
as 

detjR-^detjI - A)det{R) _ cfef(J-A) 
de<(C)   ~    det(R^)det(I + A)det{R)     det{I + A) 

nki(i-**j)(l+,'Ai) 
" nM1+,'W",'A'') 

_ nui+*?)_,, 
'     "      Ili'ol(l + *J> 

where 2p is the number of nonzero (imaginary) eigen- 
values of Q. Therefore C € SO(n) if Q G so{n) and 
thus, the Cayley transformation is injective (one- 
to-one) and surjective (onto) from the set of skew- 
symmetric matrices to the set of proper orthogonal 
matrices with no eigenvalue at -1. 

3.  Cayley Transforms as Conformal 
Mappings 

The three most important subsets of the complex 
numbers are the real numbers, the imaginary num- 
bers, and the numbers with absolute value one (i.e., 
the numbers on the unit circle). Following the stan- 
dard mathematical language, we use the symbols JR, 

ino 



0 = »TR and S1 to denote these three sets, respec- 
tively. Trivially, these sets are subsets of the com- 
plex plane, denoted by C There is a very elegant 
analog between these three subsets of the complex 
plane and the n x n matrices9, i.e., the elements of 
&»*» This analog can be easily understood and 
appreciated as follows: An elementary result in ma- 
trix algebra states that every n x n matrix with real 
elements can be decomposed into the sum of a sym- 
metric and a skew-symmetric matrix. For example, 
any A G lRnXn can be written as 

follows that there is also a neighborhood of z0 with 
/'(z) £ 0 for all z in this neighborhood . It is a 
trivial consequence of the above definition that the 
composition of conformal mappings is also a confor- 
mal mapping. 

A significant special class of conformal mappings 
in the complex plane is the class of linear fractional 
transformations (also called bilinear transformations) 

defined by 

A     A + tf^A-A^ 
A —  Ö "" 9 (6) 

It is easy to verify that the first matrix in Eq. (6) is 
symmetric and the second matrix is skew-symmetric 
Symmetric matrices always have real eigenvalues and 
skew-symmetric matrices have always imaginary eigen- 
values. Recall now that a complex number can al- 
ways be decomposed into the sum of a real and 
an imaginary part. This parallelism between com- 
plex numbers and matrices allows one to treat the 
symmetric matrices as the "real numbers   and the 
skew-symmetric matrices as the "imaginary num- 
bers" in the set of IRnxrl matrices9.   In addition, 
recall that an orthogonal matrix in IRnxn has all its 
eigenvalues on the unit circle.  Drawing the previ- 
ous parallelism even further we can therefore treat 
the orthogonal matrices as the "elements on the unit 
circle" in the space IRnXn. Similar statements can 
be made for the case of n x n matrices with com- 
plex entries (elements of CnXn), where now hermi- 
tian, skew-hermitian and unitary matrices have to 
be used instead of symmetric, skew-symmetric and 
orthogonal matrices, respectively. 

We intend to use this heuristic correspondence 
between complex numbers and n x n matrices in or- 
der to motivate and generalize the Cayley transform 
to higher order. Before we proceed, we briefly review 
some elements from complex function theory • _ . 
First, recall that a (complex) function is analytic in 
an open set if it has a derivative at each point in 
that set. In particular, / is analytic at a point z0 if 
it is analytic in a neighborhood of z0. Moreover, an- 
alytic functions have (uniformly) convergent power 
series expansions12. 

Definition 3.1 A transformation w = /(z) where 
w, z G <D is said to be conformal at a point z0 if / is 
analytic there and f'(z0) # 0. 

A conformal mapping is actually conformal at 
each point in a neighborhood of z0) since the ana- 
lyticity of / at z0 implies analyticity in a neighbor- 
hood of z0. Moreover, since /' is continuous at z0, it 

w — 
az + b (ad-tc^O) (7) 
cz + d' 

An important property of the linear fractional 
transformations is that they always transform cir- 
cles and lines into circles and lines12. In this pa- 
per we are interested - in particular - in conformal 
transformations of the form (7) which map the unit 
circle on the imaginary axis and vice versa. One 
such transformation is given by w = / (z) where 

/(*) = 
1-z 
1 + z 

(8) 

It is an easy exercise to show that if z 6 5 then 
|u,| = 1, that is, w G S1 and thus, w is on the 
unit circle. Conversely, if w G S1 then the inverse 
transformation z = f~l{w) given by 

/-» = 
l-w 
1 + w 

(9) 

implies that the real part of z is zero and thus, z G Q. 
The inverse transformation (9) is defined every- 

where except at w = -1. The point w = -1 is 
mapped to infinity (see Fig. 1). In fact, the map 
(8) introduces a one-to-one transformation / : 9 -* 

51\{-1}. 

Figure 1: Bilinear transformation. 

Let us now introduce the conformal mapping gn 

S1 -* S1 defined by 

gn(w) = wn, n = 2,3,. (10) 

The function gn is a mapping from the unit circle 
onto the unit circle.   This transformation is only 

199 



locallv infective. Therefore the inverse of gn exists 
ly locaUy. Given x = e" G tf the solution of the 

x = *A n = 2,3,. 

on 
equation 

yields that 

tü = e'(1±^),       4 = 0,1,2 n-1      (H) 

Equation (11) shows that, in general, the equation 
y = vT has more than one solution. This result will 
Jura out to be beneficial in section 5 when we discuss 
the application of higher order Cayley-transforms 
to attitude representations, because these roots can 
be used to avoid the inherent **£*«"«^ 
dimensional parameterization* of 50(3). For * - u 
in Eq. (U) we get that w = t*. We will call this 
the principal nth root of x- . 

The composition of the maps / and j„ is tue 
function hn : 9 - 51 defined by ft« = ff„ o /, that 

is 
hn(z) -m (12) 

which maps the imaginary axis onto the unit circle. 
Similarly to <?„, this map is only locally invertible. 
A local inverse is obtained, for example, by setting 
Jk = 0 in Eq. (11), in which case we have that (x - 

z-e 

where 
ö = arctan(i|^) 

and where bar denotes complex conjugate. 

4.  Higher Order Cayley Transforms 

One of the most celebrated results in matrix alge- 
bra is the Cayley-Hamilton theorem. This theorem 
states that a matrix satisfies its own characteristic 
polynomial. An important consequence of this the- 
orem is that, given any matrix A G Dt and an 
analytic function F(z) inside a disk of radius r in 
the complex plane, one can unambiguously define 
the matrix-valued function F(A) if the eigenvalues 
of A lie inside the disk of radius r. In other words, 
if F is given by 

00 

F(2) = 5>'-z<'        1*1 <r 

then 
F(A) = j>^ 

«=o 

and the previous series converges assuming that |Aj| < 
r where A,  G sp{A) for j =  l,2,...,n    There- 
fore, the matrix F{A) is well-defined.   Moreover, 
the eigenvalues of the matrix F{A) are F{Xj) (; - 
l,2,...,n)(Ref.[ll]). . 

Consider now the conformal mapping / from bq. 
(8) which maps the imaginary axis on the unit circle. 
This function is analytic everywhere. According to 
the previous discussion, the matrix 

is well-defined for Q G so{n) and, actually, C = 
HO) G SO{n). Comparison between the previous 
equation and Eq. (2) reveals that the Cayley trans- 
form can be viewed as a special case of a conformal 
mapping in the space of matrices. 

We have seen that there is a natural correspon- 
dence between 9 and so{n), as well as between 5 
and SO{n). (We caution the the mathematically in- 
clined reader to take these statements in the context 
of the discussion in section 3. We do not claim that 
this correspondence carries any more weight than 
providing one qualitative motivation for the gener- 
alization of certain complex analytic results to anal- 
ogous results in the space of matrices).  Following 
Eq. (12) we can also define a series of transforma- 
tions hn : so{n) - SO{n) by 

MO)=(J - ore+Q)~n = ('+srna - sr 
where Q is a skew-symmetric matrix. It should be 
clear by now that C = hn{Q) is a proper orthogonal 
matrix, i.e., C G SO(n). We shall refer to the family 
of maps hn(Q) in Eq. (14) as Higher Order Cayley 
Transforms. The consequences of such a generaliza- 
tion in attitude representations will become appar- 
ent in the next section. 

For now, let us concentrate on the inverse map 
ft-1 :SO{n) — so{n). Since hn = gnof one obtains 
j£i _ f-i o ,-i.   The function f~l is given by 
Eq. (9) which, when applied to a proper orthogonal 
matrix Q with no eigenvalue at-1, gives the inverse 
of the classical (or first order) Cayley transform as 
in Eq. (3). The map g~l : 50(n) -> SO(n) on the 
other hand requires the nth root of an orthogonal 
matrix. First, we show that g~l is well-defined in 
the sense that the nth root of a (proper) orthogonal 
matrix with no eigenvalue at -1 is also a (proper) 
orthogonal matrix with no eigenvalue at -1. This 
will also prove that the composition of maps g~ 
and /_1 is well-defined since the range of g~   is in 
the domain of/_1. . 

To this end, consider an orthogonal matrix C G 
SO(n) such that A # -1 for all A G sp{C).  The 
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matrix C can be decomposed as follows 

C = UQU' 

for some unitary matrix U, where 

0 = &focJfcdias(0i,02,---.0n-i,+l) 

if n is odd and 

0 = blockdiagißi, 02, • • •»©n) 

if n is even, and 

(15) 

(16) 

(17) 

(18) 

The diagonal elements of the matrix 0 in Eq. (15) 
are the eigenvalues of C. The principal fcth root of 
the matrix C is then given by 

w = ueku* 

where Wk = C and 

0fc = blockdiag{el,ek
2,.. .,©n-n+1) 

if n is odd and 

ek = biockdiag(ek
1,e

k
2l...,e

h
n) 

if n is even, and 

0 
e? = 

«*V i = i, 

(19) 

(20) 

(21) 

(22) 

rotation matrix C traces a curve in 50(3) such that 
C(t) G 50(3) for all i > 0. The differential equation 
characterizing this trajectory on 50(3) is given by 

Since e"> # -1 for all j = 1, ...,n (n - 1) the 
angles 6j # ±180 deg and thus also £ ^ ±180 deg 

for it = 2,3,... and thus e*'^ ^ -1. Notice that 
in order to keep W proper we always choose the 
positive root of the eigenvalue +1. 

5.   Attitude Representations 

In this section we concentrate on the ramifications 
of the previously developed results to attitude rep- 
resentations. Our motivation for investigating Cay- 
ley transforms in the first place, stems from the fact 
that proper orthogonal matrices represent rotations. 
In particular, 50(3) is the configuration space of all 
three-dimensional rotations. In other words, every 
element of 50(3) represents a physical rotation be- 
tween two reference frames in Et3 and conversely, 
every rotation can be represented by an element in 
50(3). 

As a reference frame, viz. a body, rotates freely 
in the three-dimensional space, the corresponding 

C=[u]C (23) 

where, given a vector w = (w1.w2.w3) € Et , the 
matrix [w] is defined by 

[w] = 
0 W3 —W2 

-W3 0 Wl 

W2 -Wi 0 
(24) 

In the sequel we apply the results of the previous 
section in order to parameterize the rotation group. 
In particular, the series of conformal mappings from 
Eq. (14) provide a family of coordinates on 50(3). 
Before undertaking this task we investigate another 
important conformal mapping. 

5.1. The Exponential Map and the Euler Pa- 
rameters 

Linear fractional transformations are not the only 
class of conformal mappings from the imaginary axis 
onto the unit circle. The exponential map, defined 
by 

w = exp{z) = e' (25) 

also maps 3 onto 51. Clearly, if z = id then |z| = 1. 
The inverse transformation is 

z = \ogw = i(9 + 2nx),        n = 0,±1,±2,... 

and is defined only locally. 
We can therefore define the exponential map from 

the space of skew-symmetric matrices to the space of 
proper orthogonal matrices. This exponential map 
is defined, as usual, by 

C = *Q = thQn (26) 
n=0 

and the series converges for every Q. For the three- 
dimensional case, the matrix Q € so(3) can be pa- 
rameterized by 

Q = 
0 &      -02 

-ßz 0       ßl 
ß2   -fr        0 

(27) 

As before, given a vector ß = {ßuß2,ßz) € Et we 
will also use the notation [/?] to denote the skew- 
symmetric matrix in Eq. (27). Noticing that 

\ß? = ßßT-\\ßtfl 
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one obtains that 

\ffW = (-l)Wfc[0,       * = 0,1,2,... 

and 

ifl»=(-i)fci^ii2fc/ - {-inßw^-Vßß7 

Substituting the previous expressions in Eq. (26) we 
get Euler's formula3 

\ß\ ßßT 

C(ß) = eW = cos^I + sintf *J + (1" cos^) "IT 

where I = ||/3||. Equivalently, 

[fl5 
+ (l-co.*)J^ (28) 

Normalizing the vector ß we get a unit vector 

e = llfll 
or 

ß = 4>e (29) 

Euler's theorem1 states that any rotation can be 
represented by a finite rotation (principal rotation) 
about a single axis (principal axis). That is, the 
principal axis and the principal angle suffice to de- 
termine the rotation matrix. From a mathematical 
perspective this amounts to parameterizing every el- 
ement in 50(3) by the principal axis and the prin- 
cipal angle. 

By letting the principal axis be along the direc- 
tion of the unit vector e and by letting the principal 
angle be 0 as above, Eq. (28) shows how this pa- 
rameterization is achieved. Clearly, 

C(*,e) = e*M (30) 

Moreover, introducing the Eultr parameter vector 
9 = (90,91.92.93) 

<f> 
2o = cos —, 

C(9) = 

Therefore, the Euler parameter representation 
is obtained by generalizing the conformal mapping 
in Eq. (25) to the space of matrices. Notice from 
Eq. (32) that C{q) = C{-q) and both q and -q 
can be used to describe the same physical orienta- 
tion. This fact can be used to construct alternative, 
or "shadow", sets of kinematic parameters obtained 
via the Cayley transforms. 

5.2.  Rodrigues Parameters 

Since the Euler parameters satisfy the additional 
constraint g2, + q\ + q\ + q\ = 1, one is naturally 
led to consider the elimination of this constraint, 
thus reducing the number of coordinates from four 
to three. The Rodrigues parameters achieve this by 
defining 

9, = c,sin|,        1 = 1,2,3     (31) 

and substituting in Eq. (28) one obtains the well- 
known formula for the rotation matrix in terms of 
the Euler parameters 

0 + 21-92-23      2 (qiq2 + 9o93) 
2 (gig2 - 2093)      2o - 2? + 22 - 93 

2 (9193 + 9092)        2 (g223 - 2o2i) 

2(9i93-9o92) 
2 (9293 + 9o9i) (32) 

9o - 9i - 92 + 93 . 

Pi , = &,       J = 1.2,3 
9o 

(33) 

The three parameters pi,P2,Pz then provide a three- 
dimensional parameterization of 50(3). The inverse 
transformation of Eq. (33) is given by 

9o = 
(l + P) 04- 9j 

Pi 

(1 + P2) a\\' j = 1,2,3 

(34) 
where p2 = p\ + p2 +pl- The Rodrigues parameters 
are related to the principal axis and angle through 
the equation 

<f> - p = tan — e 

The rotation matrix in terms of the Rodrigues pa- 
rameters can be easily computed using Eq. (32) and 
Eq. (34). 

C(p) = 
l + p & 

l-pl + 2pl      2(PlP2+P3) 
2(piP2-Ps)    l-p7 + 2pl 
2(P3P1 + P2)     2(P2P3-Pl) 

2{P3P1-P2) 
2(/>2/>3+Pl) 
l-p2 + 2pl J 

(35) 

It is remarkable the fact that the previous parame- 
terization of 50(3) can also be achieved by means 
of the Cayley transformation in Eq. (2). Indeed, if 
we introduce the skew-symmetric matrix 

0 
P3 

-P3 
0 

P2  ' 

-Pi 
Pi Pi ü J 

R = -[p} = 

the transformation 

C = (I-R)(I + R)-1 = (I + R)-\I-R)   (36) 



produces exactly the matrix in Eq. (35). There- 
fore the classical Cayley-Rodrigues parameters rep- 
resentation is obtained by generalizing the confor- 
mal mapping in Eq. (8) to the space of matrices. 

5.3.  Modified Rodrigues Parameters 

The normalization in Eq. (33) is not the only pos- 
sible one. A more judicious normalization for elim- 
inating the Euler parameter constraint is through 
stereographic projection12'13'14. Using this approach, 
the new variables 

<Ji := ._     * 
l + «o* 

j = 1,2,3 (37) 

provide coordinates on SO(3). These parameters 
are referred to in the literature as the Modified Ro- 
drigues parameters3 and have distinct advantages 
over the classical Rodrigues parameters. In partic- 
ular, while the Rodrigues parameters do not allow 
eigenaxis rotations of more than 180 deg, the Mod- 
ified Rodrigues parameters allow for eigenaxis rota- 
tions of upto 360 deg6'7'14'15'16. This can be imme- 
diately deduced by the corresponding relationship 
between a and the principal axis and angle 

<f> . c = tan — e 
4 

which is well-behaved for 0 < <f> < 2ir. Since both q 
and -q describe the same physical orientation (re- 
call the discussion at the end of section 5.1), a second 
set of parameters defined by 

J = 1,2,3 

referred to as the "shadow" set15, can be used to 
describe the same physical orientation. These pa- 
rameters are also given by 

1     . 
<r' =- 

tan | 

The transformation between a and a' is given by15 

(38) ■*—£ 
where a2 = cT a = a\ + o\ + <r\ = tan2 \. 

The rotation matrix associated with the Modi- 
fied Rodrigues Parameters is given by 

4Si + E2 8<rxcr2 + Aa3t 
8o-i(T2 - 4o-3S 4E2 +E2 _ 
%o\Oz + 4o-2E   80-20-3 - 4o-iE 

C(<r)= 
1 

1 + Ö-2 

80-10-3 — 4o-2E 

80-20-3 + 4o-iE 

4E3 + E2 
(39) 

where E = 1 - o1 and Ej = -a1 + 2a], j = 1,2,3. 
In Ref. [7] it was shown that these parameters 

are defined by a Cayley transformation of second 
order. That is, if 

5 = -M = 
0 -0-3 01 ' 

0-3 0 -o-i 

cr2 o\ 0 J 
(40) 

then the transformation 

C = (I - 5)2(/ + S)-2 = (J + S)-2(/ - S)2  (41) 

produces exactly the matrix in Eq. (39). Notice that 
the inverse of the transformation (41) is not unique 
and it requires the square root of an orthogonal ma- 
trix. Given C G 50(3) we find a matrix W such 
that 

C = W2 (42) 

Once a matrix W is calculated, the skew-symmetric 
matrix 5 containing the Modified Rodrigues param- 
eters is computed from 

s^v-ww + wy^ii+wr^i-w) (43) 
Reference [7] outlines this approach. To every or- 
thogonal matrix corresponds a principal angle and 
a principal direction according to Eq. (30). From 
Eqs. (30) and (42) one therefore has that 

W = e*^ (44) 

and W has half the principal angle of C. It should 
be apparent now how the Modified Rodrigues pa- 
rameters double the domain of validity of the pa- 
rameterization by taking the square of the classical 
Cayley transform. 

This observation motivates the search of higher 
dimensional Cayley transforms for attitude repre- 
sentations. Such transformations are expected to 
increase the domain of validity even further. This is 
the topic of the next section. 

5.4.   Higher Order Rodrigues Parameters 

According to the discussion in the previous section 
one expects that higher order Cayley transforma- 
tions will increase the domain of validity of the cor- 
responding parameters. The main task of this sec- 
tion is to derive these higher order parameters and 
find their connections to the Rodrigues parameters, 
the Modified parameters and the Euler parameters. 
To this end, consider first the fourth order Cayley 
transform defined by 

C = (I-T)\I + T) -4 (45) 
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for some skew-symmetric matrix 

T=-[r] = 

0   -r3      r2 

T3       0   -n 
-T2      n       0 

(46) 

and computing C from Eq. (41) verifies the expres- 

sion in Eq. (51). 
The relation between r and q is obtained by ob- 

serving that 

2r,- 

We know that the matrix C is (proper) orthogonal. 
Recall from the results of section 3 that if F is 

analytic function, then the eigenvalues of the matrix 
F(A) are given by F{Xj) where A,- are the eigenval- 
ues of A. It is an easy exercise to show that the 
eigenvalues of the skew-symmetric matrix in Eq. (46) 

are given by 

0,    ±f(Tf + r| + r|)* (47) 

Similarly, the eigenvalues of the matrix S in Eq. (40) 

are given by 

0,    ±t(«r?+*3+■<#* (48) 

Let AT denote an eigenvalue of T and A, an eigen- 
value of S. Comparing Eqs. (41) and (45) one sees 
that the matrices 5 and T are related by 

, = -4^-,       j = 1,2,3    (52) 
l-r2-r2-r|      l + ?o' 

Using the shorthand notation f 2 = r2 + r\ + r| the 
previous expression can be written as 

ITJ    _     qj 

1 - f2      l + ?o 

Therefore, 

,       j = 1,2,3 

9i + g\ + q\ 
l(l-r2)2"    (l + ?o)2 

or 

• (1 + go)3 

o)2 

/l + f2\2    _    ql + ql + ql + 

Vl-fV (1 + 20 
2(l + 9o)_      2__ 

"   (l + go)2     1 + 90 
(53) 

{i-sKi + sy^ii-Tni+T)-' 

This suggests that A, and Ar are related by 

l~JAf_=/l^Aiy 
1 + A,     \1 + *T) 

1 + A*"   1 + A2 

Solving for A„ one obtains that 

2Ar 

(49) 

(50) 

or that 

and thus, 

1 + f2 

= ± 
V2 

i-f2     v/r+io" 

2 ±v/2 + \/T+iö 
l-f2 y/F+qö 

Using now Eq. (52) one finally obtains that 

Ti = 
9i 

Aff = 1 + A? 

Substituting the expressions for \„ and Ar from 
Eqs. (47) and (48) in the previous equation one ob- 
tains that 

, 2       2 ,    ax*     „±t-(Ti2 + r2
2 + r3

2)* 
±i(<r2 + c\ + el)* = 2 x.^-rl-rl 

Upon squaring this expression one obtains 

2^    2A    2_d_A±±tlL- ffX + <T2 + C3 - 4(1 _ T2 _ T2 _ T|)2 

This equation suggests that a and T are related by 

^*wa_Vrf'   i=1,2,3  (51) 

Arbitrarily, and without loss of generality, we choose 
the solution with the plus sign.  Substitution in S 

i      l + 9o±\/2(l + 9o)' 

Conversely, from Eq. (53) one obtains that 

i2\2 

j = 1,2,3     (54) 

1 + 90 -(£$)' (55) 

and using Eq. (52) that 

4r,-(l-»a) 
(1 + f2)2 9; = ■//. .^  .    J = 1> 2>3 

From Eq. (55) we also have that 

Jl-*2\2    ,     (l-6f2 + f4) 
qo = 2\J+fZ) ~        (i + f2)2 

where f4 = (f2)2. Letting W = (7 - T)(J + T)"1 

and since C = W4 one obtains that 

W = e*[s] 

->r»4 



where tf> is the principal angle of C. Moreover, using 
the definition of the Euler parameters from Eq. (31) 
one obtains the following result for the r parameters 

sin t 
T — 

1 + cos f ± ^2(1 +cos f) 
(56) 

where e is the unit vector along the principal axis. 
Using the trigonometric identity cos f = 2 cos 4 -1, 
the previous equation reduces to 

sin ± 
T = 

1 + cosf ±2cos£ 
(57) 

Keeping the plus sign, Eq. (57) can be further re- 
duced to the simple formula 

4> . 
T+ = tan - e, (-4* < <f> < 4ir)       (58) 

From Eq. (58) it is apparent that r is proportional 
to the principal rotation axis, like the classical and 
the Modified Rodrigues parameters, where now the 
proportionality factor is /(# = tanf. A plot of 
f(4>) is shown in Fig. 2. 

have a unique set of "shadow" parameters like the 
Modified Rodrigues parameters15. These parame- 
ters are obtained by setting 

Figure 2: Plot of f(<j>). 

Equation (58) is reassuring, since it proves that 
the T parameters indeed behave as "higher order" 
Rodrigues parameters which can be used to "lin- 
earize" the domain of validity of the kinematic pa- 
rameterization. By this, we mean that Eq. (58) be- 
haves almost linearly as a function of the principal 
angle 4> (especially in the region -TT/8 < <f> < T/8); 

see also Fig. 3. 
If we choose the minus sign in Eq. (56) we obtain 

that . 
r_-= -re,       (0 < «^ < 8TT)        (59) 

tanf 

Moreover, reversing the signs of the Euler parame- 
ters in Eq. (54), one obtains that the r parameters 

_J  -sin 4 
1-cosf ±2sin£ 

(60) 

In can be easily verified that the corresponding "shadow" 
parameters reduce to 

tan f - 1 . 
T' — 5 e 
+      tan | + 1 

(-2» < <t> < 6»)        (61) 

and 

r! = 
1 + tan § 

1 - tan | 
e       (-6x < <t> < 2TT)       (62) 

As the original r parameters approach +1, the asso- 
ciated "shadow" parameters r' approach zero and 
vice versa. The general transformation between the 
original and the "shadow" set is given by 

r> - ~r Ur*+(i+f')f J (63) 

where f = (f2)*. Equations (58),(59),(61) and (62) 
can be used in order to compute the four distinct 
roots of Eq. (45). Note also that Eqs. (58),(61),(59) 
and (62) can be also written in the form 

T = tan(!-*|)«,        4 = 0,1,2,3 

respectively. 
The "shadow" parameter set r* is shown side-by- 

side with the original r parameters in Fig. 3. The 
shadow set is plotted in grey color. Figure 3 also 
shows that r parameters are indeed very linear for 
small rotations within ±180 deg. 

As with the Modified Rodrigues parameters (and 
other stereographic parameters15), these "shadow" 
parameters represent the same physical orientation 
as the original set and abide by the same differen- 
tial kinematic equation. They could be used to avoid 
the problems of approaching the ±720 deg principal 
rotation. By switching to the shadow trajectory, 
all numerical problems would be avoided. Having, 
however, a principal rotation range of ±720 deg is 
really more than needed. Limiting the principal ro- 
tations to be within ±180 deg would suffice and be 
much more attractive. As the magnitude of r ap- 
proaches tan | then one would simply switch the r 
to their "shadow" set. Having |r| = tan \ corre- 
sponds to 9o = 0. From Eq. (54) one can then see 

205 



In order to get the relation of p to the Euler 
parameter vector one can set 

Figure 3: Comparison of original and "shadow" r 
parameters. 

that at this point, the two sets of parameters are 
related by r = -T'. The combined set of original 
and "shadow" r parameters would provide a set of 
attitude coordinates which are "very linear" with re- 
spect to the principal rotation angle, more so even 
than the Modified Rodrigues parameters. We note 
in passing that the previous approach can be easily 
extended to any Cayley transform of order 2 , since 
Eqs. (49) and (50) can be used iteratively. 

For the third order Cayley transform we have 
that 

C = (I - Pf(I + P)-3 = U + P)-3(I - P)3 (64) 

where P = -[p] and p = (pi.pa.Ps) the correspond- 
ing parameters. If Ap and Ap denote the respective 
eigenvalues of the skew-symmetric matrices R and P 
then, using Eqs. (36) and (64), they must be related 
by a 

1 + A,     U + V 
or, upon expanding the previous equality 

1-A„     1-Af + 3A?-3AP 

1 + AP~ 1 + A3 + 3A| + 3AP 

thUS l4.A     (l±hzl 

Solving for Xp we obtain 

1 + 3A2 

A,(3 + A2) 

1 + 3*2 

Pitt-p\-pl-pD -gj. 
1-3(P?+P

2
2 + P1)      90 

(65) 

and solve for p2 = PI+PI+PI After some algebraic 
calculations, it is not difficult to show that, in. fact, 

(p2 + l)3  _1 
(l-3p2)2      ql 

(66) 

Solution of the previous equation for p2 requires the 
solution of a cubic equation. Once p2 is known how- 
ever, it can be substituted into Eq. (65) to get the 
desired result. Actually, from Eqs. (65) and (66) we 
have that 

l-3p2 ,Pi(3-P2)     i = i,2,3 
(1 + P'P (1 + P')S 

Letting W = (I- P)(I + P)-1 then since C = W3 

one obtains that 

W = e*w 

where <j> is the principal angle of C. 

6.  Kinematics 

The kinematic equations in terms of the r param- 
eters can be computed as follows. From Eqs. (23) 
and (45) we have that 

C = ±[(I-Tni + T)-< + (I-T?±[{I + T) 

=   S(w)(7-T)4(J + T)-4 

or that 

l[(/-T)4]-C(T)i(/+r)4] = S(u,)(7-T)4 (67) 
at "' 

where we have used the fact that 

for any square matrix A. Using also the fact that 

The previous equation suggests that pj and pj are 
related by 

■ P,(3-P?-Pl-P3)      , _ ! 2 3 
^ = ±l-3(p? + p2

2 + pl)1    J-1,2'3 

-41 

j=0 

and performing the differentiations in the left-hand- 
side of Eq. (67). one obtains a set of nine linear equa- 
tions in terms of fi,f2. and f3. Similarly, the right- 
hand-side of Eq. (67) is linear in terms of W1.w2.w3- 
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Choosing three (independent) equations out of these 
nine, we get a linear system of the form 

V{T)T = U(T)U 

Solving for f we finally get that the kinematic equa- 
tions for the r orientation parameters are given by 

± = V-\T)U(T)U = G(r)u, 
at 

where the matrix G(r) is given by 

n + riri-Ziri + ri) 
2r3(l-f

2) + r1r2(3-f2) 
_ -2ii(l-f3) + Ti»s(3-f2) 

-2r3(l-f
2) + nr2(3-f2) 

r2 + r2r3
2-3(r| + r2) 

2r1(l-f
2) + T2r3(3-f2) 

2r(l-f2) + r1r3(3-f2) 
-2n(l-T2) + TUTs(3-fa) 
r3 + r2r2

2-3(r2 + r2
2) 

G(r) = 1-f T.2 

(68) 

and 2} = iU + ri+Ta+T3-2i/), j = 1,2,3. This 
equation can be written more compactly in a vector 
form as follows 

—    =     ^r [2(3 -f2)rrT 

dt 8(1 - f2) l v ' 
-    4(l-f2)[r] + (l-6f2 + f4)J]w  (69) 

These kinematic equations are not as simple as 
the corresponding kinematic equations for the Ro- 
drigues or the Modified Rodrigues parameters7'14. 
Moreover, there is an apparent singularity at f = 
±1, equivalent^ at <f> = ±2ff. The limiting behavior 
of these equations as f —► ±1 will be determined 
through further analytical and numerical studies. 
At any rate, because of the near-linear behavior be- 
tween 4> and the magnitude of r as seen in Fig. 2, 
for small principal angles, Eq. (69) is expected to be- 
have in a more "linear-like" fashion than either the 
Cayley-Rodrigues or the Modified Rodrigues param- 
eters. 

Similarly, for the third order Cayley parameters, 
one can derive the following kinematic equations 

dp 
dt 

1 
[(11-PW 6(3-p2) 

-    3(3-p2)[p] +3(1-3p2)l]u    (70) 

These equations can be derived starting from Eqs. 
(23) and (64) and using similar arguments as before. 
Singularities for the p parameters are encountered at 
p = ±y/Z. As before, further analysis is required to 
determine the limiting behavior of this system as 
p — ±\/3. 

7.  Numerical Example 

In order to demonstrate the potential benefits or 
drawbacks of the previous kinematic parameters the 
following simulation was performed. We integrated 
Eqs. (69) as well as the corresponding kinematic 
equations in terms of the Cayley-Rodrigues (p) and 
the Modified Rodrigues parameters {a) starting from 
the zero orientation and subject to the constant an- 
gular velocity vector u = (0.25,0.4, -0.1) {rad/sec). 
This corresponds to a linearly increasing value of the 
principal angle 4>. The results of the simulations are 
shown in Fig. 4. This figure actually shows only the 
first components of the kinematic parameter vec- 
tors, as the other two components exhibit similar 
behavior. 

COMPARISON OF ORIENTATION PARAMETERS 
i      i 

Figure 4: Orientation parameter comparison. 

As it is evident from this figure, the classical and 
the Modified Rodrigues parameters encounter the 
singularity earlier that the r parameters. We note, 
however, that since discontinuities in the parameter 
description are typically acceptable in applications, 
the Modified Rodrigues parameters can be made to 
avoid the singularity altogether by simply switch- 
ing to their "shadow" set15. The same also holds 
for the r parameters via Eq. (63). Figure 5 shows 
the simulation where the parameters a and r are 
allowed to switch to their respective "shadow" sets. 
Although the points of switching are arbitrary and 
can be chosen according to the particular applica- 
tion, a reasonable choice is to switch when the pa- 
rameters and the corresponding "shadow" set have 
opposite signs. This will ensures continuity of the 
magnitude. From Eqs. (38) and (63) this occurs 
when <j> = it 7T, ifc = ±1, ±2,.... This is the situation 
depicted in Fig. 5. The r parameters are shown in 
solid line, and the a parameters are shown in dashed 
line. 
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COMPARISON OF ORIENTATION PARAMETERS 
_, , , r—i 1 1 ' ■ "- 

COMPARISON OF ORIENTATION PARAMETERS 
-i r 1 i '  

$(rad) 

Figure 5: Orientation parameter and their "shadow" 

sets. 

Since the classical Rodrigues parameters do not 
have an associated "shadow" set (better, the shadow 
set coincides with the original parameters), only the 
the a and r parameters are plotted in Fig. 5. 

8.  Conclusions 

We have extended the classical Cayley transform 
which maps skew-symmetric matrices to proper or- 
thogonal matrices to higher orders. The approach 
is based on the observation that Cayley transforms 
can be viewed as generalized conformal (bilinear) 
mappings in the space of matrices. The Euler pa- 
rameters, the Rodrigues parameters and the Modi- 
fied Rodrigues parameters follow as special cases of 
this approach. In addition, we generate a family of 
higher order "Rodrigues parameters" which could be 
used as coordinates for the rotation group. It still 
remains, however, to determine the applicability of 
these higher order parameters in realistic attitude 

problems. 
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AN EIGENFACTOR SQUARE ROOT ALGORITHM 
FORMULATION FOR NONLINEAR DYNAMICS 

John L. Junkins* and   Hanspeter Schaub' 

A novel method is presented to solve the equations of motion for a large 
class of constrained and unconstrained dynamical systems. Given an analytic 
expression for the system mass matrix, quasi-coordinate equations of motion 
are derived in a manner that generates equations analogous to the dynam- 
ics/kinematics partitioning in Eulerian rigid body dynam.cs This separation 

• is accomplished by introducing a new quasi velocity coordinate r, which yields 
a dynamical system with an identity mass matrix. The problem of inverting 
a complex mass matrix is replaced by the problem of solving two first order 
differential equations for the mass matrix eigenfactors. A new method s in- 
troduced whereby dynamical constraint equations are solved using a related 
eigenfactor formulation, forgoing any need to solve the algebraic constraint 
equations simultaneously with the differential equations of motion. 

INTRODUCTION 

The equations of motion of complex dynamical systems are usually second order nonlinear dif- 
ferential equations which require taking the inverse of a time-varying, cormguration variable mass 
matrix. Such dynamical systems could be a large nonlinear deformation model for an arbitrary 
body, a multi-body system or a multi-link robot arm. One reason why the resulting dynamics 
are complicated is that they are usually written in a way that combines coordinates natural to 
the momentum or energy description with those natural to the displacement description. The re- 
sult is a split between momentum differential equations and kinematic differential equations. 1ms 
natural splitting is typically destroyed when the generalized methods of mechanics are employed 
and result in a more complicated mass matrix. This occurs when the classical Lagrange equations 
of motion are written in terms of a generalized coordinate and their time derivatives. By using 
Newton-Eulerian mechanics or the Boltzmann-Hamel version of Lagrange's equations, it is possi- 
ble to introduce quasi-coordinates which separate the decision of choosing displacement coordinates 
and velocity (momentum) coordinates. As is well-known, (e.g. Eulerian rigid body dynamics), this 
process often leads to much more attractive equations than those that result from brute force 
application of Lagrange's equations. It is possible to bring the equations of motion to their most 
convenient form with a constant mass matrix.1-2 For general configuration-variable mass matrices, 
there has not been a generally applicable method to accomplish an analogous transformation. 

Several methods have been proposed to carry out the mass matrix inverse2'3 ranging from taking 
an algebraic inverse, to using traditional numerical inverse methods (such as a Cholesky decompo- 
sition) to the elegant method of using the innovations factorization.2 Naturally each method has its 

•George Eppright Chair Professor of Aerospace Engineering, Aerospace Engineering Department, Texas A&M University, 
College Station TX 77843, Fellow AAS. 

^Graduate Research Assistant, Aerospace Engineering Department, Texas A&M University, College Station TX 77843. 
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advantages and disadvantages. The algebraic inverse in only feasible for relatively small systems, 
even with symbol manipulation programs such as Mathematica and Maple. Talcing a numerical 
inverse at each integration step is computationally costly and difficult. The method proposed by 
Ref 2 uses the innovations factorizations technique to parameterize the mass matrix and recur- 
sively approximate its inverse. The mass matrix factors involved are obtained from a recursive 
filter. However, this recursive filter is conveniently applicable only to a linked body chain and other 
kinematically recursive topologies. 

This paper presents a method to solve a very general class of constrained and unconstrained dy- 
namical systems and avoids the necessity of inverting a configuration variable mass matrix to obtain 
instantaneous accelerations. The equations of motion will be separated into dynamical and kine- 
matic differential equations somewhat analogous to classical developments in rigid body dynamics. 
The mass matrix will be initially parameterized by a numerical eigenfactor decomposition. After es- 
tablishing this initial condition, only the eigenvectors and the eigenvalues of the mass matrix will be 
forward integrated from differential equations derived herein. The resulting method will require no 
matrix inverse to be taken. The eigenfactor differential equations are solved by extending an elegant 
square root algorithm proposed by Oshman and Bar-Itzhack4 to solve the matrix Riccati equation. 
The formulation also allows any Pfaffian constraints to easily be incorporated mto the equations 
of motion, thus avoiding having coupled algebraic constraint equations to be solved simultaneously 
with the original equations of motion. The implications of these developments for both efficiency 
and accuracy are enormous. 

PROBLEM FORMULATION 
The equations of motion for a dynamical system are usually derived by first formulating the 

kinematic energy T and the potential energy V. Let the system Lagrangian £ be defined as 

C = T - V C1) 

Let x be the system state vector, then the potential energy is given by 

V = V(x) (2) 

The kinetic energy can be written in terms of the generalized configuration coordinate vector deriva- 
tive x or in terms of a quasi-velocity vector y defined as 

y = P(x)x (3) 

A field where quasi-velocities are often preferred over configuration coordinate derivatives is in rigid 
body dynamics. For example, it is much simpler to write the system kinetic energy in terms of the 
body angular velocity w then in terms of the Euler attitude angle derivatives 0. Let M(x,t) be the 
mass matrix for a system described with y, then the kinetic energy is given by 

T = T2 + Tx + To = \yTM (x, t)y + GT(x, t)y + T„(x, t) (4) 

where the Tx and T0 terms only appear in unnatural systems. However, to find the traditional version 
of Lagrange's equations of motion the kinetic energy needs to be written in terms of generalized 
coordinate derivatives, not quasi-velocities. Using Eq. (3), the kinetic energy can be rewritten in 
terms of x. . 

T2 = ixTP(x)TM(x,t)P(x)i = -xTM{x,t)x (5) 
2 « 
Tx = GT(x, t)P(x)x = GT(x, t)x (6) 

where M(x, t) = P(x)TM(x, t)P{x) is the system mass matrix for the state vector (x,x) and G(x, t) = 
PT(x)G(x,t). For mechanical systems M(x,t) will always by symmetric positive definite. Let Q be 
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a non-conservative forcing term and let A'X be the constraint force, then the Lagrange equations 

of motion are defined as rf   _. _d± = Q-ATX (7) 
Jt\dx)     dx 

with the Pfaffian non-holonomic constraint 

A(x)x + b(t) = 0 W 

The partial derivatives of the system Lagrangian C are 

?£ = M(x,t)x + G(x,t) (9) 
ox 

Tx = 2X -dx-X + —dx—X+     dx dx 

(11) 

(12) 

The resulting standard Lagrange equations of motion are 

M{x,t)x+(M--xT-±^ —Js4-G(*,0 dx     +dx 

or more compactly ~y 
M(x,t)x + H (x,x,t) + — = Q-AT\ 

The above equations of motion are a second '^.^^^^^^^^^ 
generally a simple task to solve. In particular, the time and state dependence of the mass^matnx 
posSlparticular difficulty. These standard equations of motion, when coupled to the constraint 
SSteSSSTs), pose a more significant challenge, especially for high dnnensioned systems. The 
nSity o'soUg systems of ordSn+m to obtain (», A) for each {x,x,t) hes at the heart of the 

difficulty. 

THE BOLTZMANN-HAMEL EQUATIONS OF MOTION 

We motivate this development using rigid body dynamics wherein it is connnon practice to separate 
the momentum dynamics and kinematics. Euler's equation of motion are usually written in terms 
of thTbTdy rguS velocity u, not in terms of the time derivative of the attitude coordinate vector 

e' 9w = -[w]9w + u /13N 

6 = f(6)u 

The first equation of Eqs. (13) describes the system momentum time rate of change, the second 
Senses the kinematic relationship between the body angular velocity and the attitude coordmate 
derivative. Only using 6 and its inertial derivatives would yield a much more complex second order 
differential equation. 

This separation of dynamics and kinematics in the equations of motion cannot be accomplished in 
more general dynamical systems. However, we show a way to accomplish an analogous structure ui 
S^eUL», at the expense of increasing the number of differential equations to be so Wed 
This involves projecting the configuration coordinate derivative into a moving reference frame by 
hToLing a quii-vebcity vectoTwhich diagonalizes the mass matrix. Since the^mass, matrix M» 
Sways syrnmelic and positive definite, it can be spectrally decomposed using the or hogmal red 
eigenvector matrix E and the diagond positive red eigenvdue matrix D. Instead of using E, let us 

useC = I5r. M = CTDC      CCT = I       D = diag(Xi) (14) 
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Let the diagonal S matrix be defined as the positive square root of the eigenvalue matrix D. 

S=jD = diag (+V^l)       D = S?S (15) 

Substituting Eqs, (14) and (15) into Eq. (5) yields the following kinetic energy expression. 

T2 = \xTCT^SCx (16) 

By introducing the same velocity coordinate vector rj as in Ref. 2 

T) = SCx      T) = T)(\i{x),a(x),x) (17) 

we obtain a new simplified expression for the kinetic energy. The mass matrix associated with r? is 
the identity matrix, so 

T* = T; + T: + T0* = iifij + GT(x, t)CFS^ti + To (x, t) (18) 

Note that T2* depends explicitly on rj. However, if we choose (x, x) as the independent set for taking 
partial derivatives, we must recall that TJ depends on (x, x). The x dependence is implicit in Eq. (14), 
(15), (17) because S(x), C(x) parameterize M(x) = CFFSC. Also note that T is equal to T (both 
represent the same physical kinetic energy quantity), they differ only in their algebraic formulations. 
The inverse mapping of Eq. (17) describes the kinematic relationship between x and r; similar to the 
relationship of 6 and w in Eq. (13), except for the orthogonality of C and the diagonal nature of S 
make the inverse near-trivial. 

x = CFS-Xri (19) 

The partial derivatives of the system Lagrangian £ are now rewritten in terms of the new generalized 
velocity vector 77 using the chain rule.1 

M = &T, drf&T = crs&T (20) 

dx       dx      dx    dt] or) 

"^ dC_dT'       TdT*     dV ,. 
dx      dx dr\      ox 

where J is the sensitivity matrix of »7 with respect to the state vector x. This matrix is non-zero 
since the C and S both indirectly depend on x. 

J=3 = 
dx 

Using the chain rule dr]/dxk is expressed as 

drj 
dx y-&] (22> 

dxk -(Sr^fH5"" (23) 

The partial derivatives of T* with respect to 77 and x are 

?f- = , + S-1CG(x,t) (24) 
on 

&r_ = agr(x,t)c<T5_1    dT0(x,t) (25) 
dx dx dx 

With all these substitutions the Lagrange equations of motion in Eq. (7) become 
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After carrying out the time derivative and using the orthogonality of the C matrix, the following 

first order differential equation is obtained. 

f, + s-1 (cc*s+S-CJT- eg V*"1) n = S^CF - & 

where 

and 

B = ACTS To-l 

.G+^ + ^S-'CG 
ox 

(27) 

(28) 

(29) 

The two first order equations (19) and (27) replace the classical second order Eq. (12). Eq (27) is 
an interesting new form of the well-known the Boltzmann-Hamel equation*.5 for our choice of quasi- 
coordinates „. This diagonalized equation of motion is very similar to the one introduced m Ret 2 
except for the parameterization of the eigenvector matrix and the formulation of the Conohs term. 
Note that no matrix inverse needs to be taken thanks to the orthogonality of the C matrix Inverting 
the S matrix is trivial since it is a positive diagonal matrix. At this stage the expensive matrix inverse 
problem has been traded for another problem involving finding the eigenfactor derivatives and the 

sensitivity matrix J. 

MASS MATRIX EIGENFACTOR DERIVATIVES 

To solve the Boltzmann-Hamel equation, we seek auxiliary differential equations to yield the 
eigenfactor derivatives with respect to time and the state vector i, since by solving these we can 
establish the instantaneous C, S and J matrices. A very elegant square root algorithm developed 
by Oshman and Bar-Itzhack to solve the matrix Riccati differential equation is extended here to 
solve for the mass matrix eigenfactor derivatives. 

This square root algorithm works very well, even with repeated eigenvalues and clusters of near- 
equal eigenvalues. Assume that the mass matrix M has k distinct eigenvalues, each with an algebraic 
multiplicity of m,-, then let the eigenvalues of Jtfbe ordered as 

1All...,
miA1>...,

1A*>...,
m»A* (30) 

and equate this series to the series Alf.... A„. The ordered eigenvalue matrix D is then given by 

D = diag(Xu...,Xn) (31) 

Let a be the j-th row of the C matrix. Since C is the transpose of E, a is simply an eigenvector 
written as a row vector. Let «'c, be the i-th eigenvector corresponding to the j-th eigenvalue. All n 
eigenvectors are ordered according to their respective eigenvalues in the following manner. 

Jci 

C = 

mi 
Cl 

lck 

mi 
Cjfe 

C\ 

lc„ 

(32) 

Every proper orthogonal matrix satisfies a differential equation of the form 

c = -nc (33) 
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wnere at 10 a. ai»." ^j""— - 
onto ci,...,c„ in terms of py as4' m 

ftij = cjM{x,t)c? W 

where 0 is a skew-symmetric matrix. All eigenfactor derivatives of M are expressed by a projection 

onto ci,..., c„ in terms of py as4,7 

mj = CjM(xj 

The distinct elements of the fi matrix elements are4- 

[fly] = - 

Ä for  Ä  <««-. 
0 for Si = ay \™) 

flm„«>(^)     for |^| >fima« 

where fimax is a maximum bound for the fl matrix entries depending on the accuracy of the software 
uied TWs term is included to smoothly handle the case where A,- is almost equal to Xj. Ref. 4 shows 
that this slight modification has minimal impact on the accuracy of the solution This is because 
the eigenvector variations corresponding to the clustered eigenvalues have negligee influence on the 

diagonalization of M. 

The time derivative of the eigenvalues A,- are4' 

However, the time derivatives of the eigenvalues are not required but the derivative of^the square 
root of the eigenvalues. Let «, be the i-th entry of the S matrix. Using the chain rule, the derivative 

of Si is n 

k- - —A- 37 

This is written in a more compact form using the diagonal matrix T 

T = diagifiu) (38) 

s = irs-x (39) 

Substituting the above eigenfactor time derivatives into Eq. (27), the Boltzmann-Hamel equations 

are reduced to 

f, + s-1 (US+ITS-' - CJT - cff Vs-1) n = S~
X
CF - BT

\ (40) 

At first glance, Eq. (40) may seem more complicated than than the original equations of motion 
Keep in mind, however, that S and T are diagonal matrices which greatly reduces the computational 

burden. 
To be able to calculate the sensitivity matrix J, we still need an expression for dS/dxk and 

dC/dxk. Note that in the previous development of S and C it did not matter with respect to what 
variable the derivative was taken. This allows 6S/dxk and 6C/dxk to be expressed in a very similar 
manner as were S and 6. Let fc/iy be defined as 

*.-.       ■- dM^c
T (41) 

^~Cj    dxk      ' 

and the diagonal matrix *T be 
kt = diag(kPii) (42) 

The partial derivative of 5 with respect to xk has the same form as the time derivative of 5 in 

Eq. /eqrefdSl as 

|^ = i*f5"1 (43) 
dxk     2 
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To find dC/dxk, let the skew-symmetric matrix *fl be defined as 

: W = < 
<ft, ^T for l=A J0 ' for Si = Sj (44) 

assign (-ft,)    for|^|>fimax 

dC/dxk is then defined analogously to the time derivative of Eq. (33) as 

££. = -«ÖC (45) 
dxk 

(46) 

Using Eqs. (43) and (45) dT}/dxk can be written as 

dxk     \2 ) 

PFAFFIAN NON-HOLONOMIC CONSTRAINTS 

If the dynamical system is unconstrained, then the Pfaffian constraint matrix £^J>"^ 
Eq (40) is fully defined. However, if the dynamics are constramed through he Pfaffian con   ram 
surface given in Eq. (8), then Eq. (40) will need to be solved simultaneously with  he constraint 
eq^tTon UsüS IJ. (19) we rewrite the Pfaffian constraint in terms of the new veloaty vector „. 

ACfS-^ + b-O (4?) 

which can be simplified using Eq. (28) to 

£,, + 6 = 0 (48) 

The dynamic constraint equations is obtained by taking the first time derivative of Eq. (48). 

B,7 + B7j + o = 0 (49) 

Using Eqs. (39), (33) and (28) B can be expressed as 

B = (ACT + ACT - ACTS-lS)S-> = ^r + ACr{Q _ Is"^"1)) S"1 (50) 

To determine (f,, A), Eq. (40) will need to be solved simultaneously with Eq. (49), we are led to the 
differential-algebraic system 

/ sn (a\ = (-s-*(as+\Ts-*-cj*-c%TcPs->)f,+s->cF\     (51) 
B     0 J \Xj      y -Br)-b J 

which can be written in more compact form as 

*(!)-(;) (52) 

Since B is a mxn matrix, M2 is a symmetric (n+m)x{n+m) matrix. A partitioned matrix 
inversion formula7 is used to find the inverse of M2. Because of the use of the quasi-coordinates 
T), the upper left partition of M2 is a nxn identity matrix which simplifies the partitioned inverse 
immensely. For this case the mxm Schur complement A reduces to 

A = BBT (53) 
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Then the partitioned inverse of M2 is 

l     \l-B
TA~lB   J5rA-n (54) 

M2    = [      A~lB -A"1 J ^    ; 

Using M2
-1 in Eq. (54) the constrained differential equation of motion for r? is 

fi = (7 - BTA~1B)a1 + BTA-1a2 (55) 

The Lagrange constraint vector A is 

A = A~lBax - A_1a2 (56) 

Note that if zero constraint is imposed on the dynamical system then Eq. (55) collapses back to 
Eq (40). If the number of system constraints m is small, then A"1 could be inverted for each time 
step. However, as m grows larger taking a numerical inverse quickly becomes computationally very 
expensive. 

Since A for linearly independent constraints, is a positive definite symmetric matrix by Eq. (53), 
it can be decomposed using the eigenfactor parameterization analogous to the mass matrix parame- 
terization. Let CA be the transpose of the eigenvector matrix of A, and let SA be a diagonal matrix 
whose entries are the positive roots of A eigenvalues. Then through a spectral decomposition A can 
be written as ,__.. 

A = CiSlSAC* (57) 

Since CA is an orthogonal matrix and the diagonal entries of 5A are all positive, the inverse of A is 

A-^CIS^CA (58) 

This direct inverse formulation reduces Eq. (55) to the following matrix inverse free formulation. 

r) = (/ - BTClS?CAB)ai + BTdS?CAa2 (59) 

Keep in mind that SA is a diagonal matrix with positive entries. Therefor finding its inverse involves 
only scalar inversions. 

To update the CA and SA matrices without resolving the eigenvalue, eigenvector problem, their 
time derivatives are found using the square root eigenfactor algorithm4 analogously to finding the 
time derivatives of C and S of the mass matrix M. Assume all eigenvectors and eigenvalues are 
arranged as described in Eq. (30) and (32). Let cA>- be the i-th row vector of the CA matrix, then 
ßij is defined be 

where the time derivative of A is . 
A = BBT + BBT (61) 

and B was defined in Eq. (50). The diagonal matrix TA and the skew-symmetric matrix fiA are 
then defined as 

TA = diagißu) (62) 

[J1A J = 

fin for , fin „ <fi„ .1    _,5 
"■3        *i . 

0 for s&j = sA. (63) 

[n-«*» (=#*;) for ßa >fir 

The time derivatives of CA and 5A are then written as4 

SA = l^S? (64) 

CA = -OACA (65) 

8 
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SOLUTION METHOD OUTLINE 

A method has been presented that brings a general class of constrained multi-body dynamics to 
a form which completely avoids the necessity of inverting configuration-variable matnces to obtain 
instantaneous accelerations. The form of the equations is very analogous to classical dynam- 
ics/kinematics" quasi-coordinate development of rigid body dynamics. The eigenvalue eigenvector 
problem is only solved once numerically to find the initial S(t0), C{t0), 5A(t0) and CA(*o) matnces 
as outlined in Figure 1. After initially ordering the eigenvalues and eigenvectors as outlined earlier 
they will need need to be simply rearranged thanks to the square root algorithm. Instead of using 
the generalized coordinate derivative i as the velocity measure, a new quasi-velocity T) is mtroduced 
to which corresponds an identity mass matrix. 

To evaluate the eigenfactor derivatives it is assumed that M(x,t) and dM/dxk{x,t) are available 
algebraically. This is a feasible assumption, especially in view of the several modern software packages 
like Maple and Mathematica which can derive the mass matrix in an explicit algebraic form and 
automate the generation of, for example, the C-code to compute M{x,t) and dM(x,t)/dxk. 

Kinetic & Potential Energy 
Pfaffian Constraint 

Z 
Extract algebraic system mass matrix 

expression M to find 
lif dMßxk 

li|-"-|'f ii',,iil,li,,   l -   ~- mmmmummmm-wm 

Perform numerical spectral decompositions 
for 

C(f0)     S(t0)     CA(f0) SA(r0) 

Numerically integrate the dynamical system 

Figure 1 Flow Diagram of Eigenfactor Square Root Algorithm 

For a constrained dynamical system, traditional processes lead to the classical Lagrange equations 
of motion coupled to second order differential constraint equations where a time and configuration 
varying mass matrix needed to be inverted. In the present development, there are no matrix inverse 
operations. These equations are mapped into a set of simpler nonlinear first order differential 
equations. The second order differential equation for x is replaced with two first order differential 
equations J) and x. The mass matrix inverse problem is side-stepped by introducing the mass matrix 
eigenfactor matrices and solving their usually well-behaved differential equations for 5 and C instead. 
This method has no second coupled constraint equation, since the constraint force was already solved 
for and back-substituted into the equation of motion for t]. However, this involved taking the inverse 
of a symmetric Schur matrix A. This inverse can also be avoided very simply by using the eigenfactor 
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matrices of the Schur matrix instead of the Schur matrix itself. Therefor, again a matrix inverse is 
replaced by solving two first order differential equations 5A and C&. Evaluation of operation count 
and error propagation issues shows solving these differential equations to be vastly superior to the 
conventional approach requiring matrix inversions. 

To solve the above first order differential equations many types of integration methods could be 
used. However, the Runge-Kutta type methods are not attractive since they require the derivatives 
to be evaluated at discrete point between the time steps. This poses a problem when evaluating J 
at these intermediate steps since it depends on dS/dx and dC/dx. It would require resolving the 
eigenvalue eigenvector problem at these intermediate steps to find the proper J matrix. Clearly not 
a desirable solution. 

In lieu of using Runge-Kutta or analogous single-step methods, it is recommended that a predictor- 
corrector type method is used. These methods only evaluate the derivatives at the integration steps 
and not in between them. A very stable and accurate predictor corrector type method is the 
Hamming's method.8 Its accuracy is A5, comparable to the 4-th order Runge Kutta method. One 
drawback of the predictor corrector method is that they are not self starting. Another method, such 
as the modified Euler method,8 can be used to establish the starting table. 

DUAL-LINK MANIPULATOR SIMULATION 

To demonstrate the eigenfactor square root algorithm, a constrained dual-link manipulator motion 
is simulated. The shoulder joint is fixed and the elbow joint is free to rotate. The link from the 
shoulder to the elbow has a length Zi = 0.5 and the link from the elbow to the hand has a length 
l2 = 1/V2. Both links are assumed to be mass-less. The elbow mass and the hand mass are 
mi = m2 = 1. The hand is connected to a point (0,4) through a spring with a stiffness K=l. The 
system constraint restricts the hand to move only horizontally as illustrated in Fig. 2. There are no 
non-conservative forces or torques acting on the system. 

Figure 2  Constrained Dual-Link Manipulator Layout 

The hand coordinates (i,y) are given as 

x = l\ cos 61 +12 cos 82 

y = /isin0i -W2sin02 

The system potential energy is the total spring energy given as 

V(0) = i*T((4-y)2 + x2) 

(66) 

(67) 

(68) 
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The system kinetic energy is given as 

T = \rml\e\ + \m2 U\6\ + 2lxl2 cos (Öx - 62)e\e2 + Z|0|) 

Prom the kinetic energy T the system mass matrix can be extracted. 

**ta\     T      (rn1 + m2)ll m2hl2 cos (61-02) 
M( 0)-[m2/1/2cos(Ö1-02) m2Zl 

The eigenfactor square root algorithm requires an algebraic expression for M and dM/d9k. They 
are found directly from the system mass matrix M in Eq. (70). 

(69) 

(70) 

.       .       I" 0 Tn2hhsvn.{0i-theta2){Ö2-6i) 
M(M) - [m2hl2 sin^i - theta2)(62 - Bx) 0 

8M 

dM 
de2 

0 — m2/i/2 sin (9i — 62) 
-m2hl2sm(6i-e2) 0 

0 m2fif2sin(0i-02) 
m2Zi/2 sin (61 — 62) 0 

(71) 

(72) 

(73) 

The system constraint on m2 is y = 0. Using Eq. (67) this can be expressed as A{6)B = 0 where 

A(e) = [hcos61    l2cose2] (74) 

The simulation is started at rest with öx = 0° and 02 = 60° and let run for 10 seconds.  The 
integration step size is 0.001 seconds. The resulting motion is shown in Fig. 3 below. 

Figure 3 Dual-Link Manipulator Motion 

Clearly the Pfaffian constraint was successfully incorporated into the equations of motion. The 
hand only moved in a horizontal manner. Not having to solve auxiliary constraint equations is 
of great importance as the number of constraints increases. Since this is a very simple dynamical 
system, an exact inverse was found of the system mass matrix and used to forward integrate the 
classical Lagrange equations of motion to verify the new equations of motion. The results were 
identical to solving the (J), i) dynamical system. 

One critical case of the eigenfactor square root algorithm is when two or more eigenvalues are 
clustered very closely around one value. In this case elements of ft could go to infinity. This case 
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Figure 4 Time History of the Eigenvalue Square Roots 

was resolving by putting an maximum bound on the magnitude of the eigenvalue square roots. This 
bound is usually set to machine accuracy (i.e. 1015 for this simulation). As can be seen in Fig. (4) 
the two eigenvalue square roots start out distinct and periodically become equal. The condition 
Sl = s2 means geometrically that ft - 02\ is 90° or that the lower arm is perpendicular to the 
upper arm. The eigenfactor square root algorithm did not appear to have any difficulty handling 
this numerical singularity. Not even after repeatably going through this condition. These results 
seem to confirm some of the robustness predictions made in Ref. 4 about the square root algorithm. 

time[s] 

Figure 5  Time History of the Total Energy Integration Error 

Since all the forces and torques acting on the dual-link manipulator are conservative, the total 
system energy should be constant. This makes the total energy a good integration error check and 
is shown in Fig. 5. Since the motion starts out at rest, the integrations remains very small initially. 
As the motion gains momentum, the integration error starts to accumulate very slowly. The forward 
integration was performed with only performing the predictor and corrector process once. For the 
same step size the error could be further reduced by repeatably applying the P-C method during the 
forward integration. This is possible since P-C methods allow the integration error to be estimated 
during the forward integration. 

CONCLUSION 

The eigenfactor square root algorithm can successfully solve a very large class of nonlinear dy- 
namical systems. The classical second order Lagrange equation of motion is replaced with two first 
order differential equations by introducing a new quasi-velocity TJ. Pfaffian constraints can be ac- 
counted for directly in the new equations of motion. Constraint equations no longer need to be 
solved simultaneously with the dynamical equation thus greatly reducing the computational burden. 
Any inverse of a symmetric positive definite matrix such as the mass matrix is replaced with the 
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problem of solving the respective eigenvalue and eigenvector matrix first order cLffe enüal equat^ 
Numerical simulations for a dual-link manipulator confirm the vahdny of the method. Using he 
sqTe root algorithm for solving the eigenfactor differential equations appears to be very robust 
even when some eigenvalues are clustered closely together. 
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GLOBALLY STABLE FEEDBACK LAWS FOR 
NEAR-MINIMUM-FUEL AND NEAR-MINIMUM-TIME POINTING 
MANEUVERS FOR A LANDMARK-TRACKING SPACECRAFT 

Hanspeter Schaub*, Rush D. Robinett+ and John L. Junkins* 

Utilizing unique properties of a recently developed set of attitude parame- 
ters the modified Rodrigues parameters, a feedforward/feedback type 
Sol lawVS developed for a spacecraft undergoing large> nonhneu£0- 
tons using three reaction wheels.  The method is suitable for traocng 
Given reference trajectories that spline smoothly into a target state; tt>=se 
referencTtaiectorfes may be exact or approximate solutions of me 
SISmlqSZtfrnotiol. An associated asymptotically stable, najj. 
eaTobserter is formulated for state estimation. In particular we Husjate 
the ideas using both near-minimum-time and near-m.n.mum fuel rota^ns 
about Eulefs principal rotation axis, with parameterization of the sharp- 
ness of the coKtrol switching for each class of Terence maneuvers^ya- 
punov stability theory is used to prove rigorous global asymptote statuty 
of the closed-loop motion in the end game and during the tracking of tfie 
reference motion* The methodology is illustrated by designing exanrpe 
control laws for a prototype landmark tracking spacecraft; simulaüons are 
reportedTat show this^proach to be attractive for practical apgaftog 
The inputs to the reference trajectory are designed with ufer-oontroted 
sharpness of all control switches, to enhance the trackab.lity of the refer- 
ence maneuvers in the presence of structural flexibility. 

INTRODUCTION 
Motivated by  problems  arising  in  the  precision  pointing  of  imaging  sateUites  tor 

non-proliferation and environmental monitoring applications, there is renewed interest in^e prob- 
lem of rapid large angle maneuvers followed by precision pointing/tracking of »""^ada fiom 
near-earth orbits  Pointing and tracking tolerances for these imaging systems are on the order of 
microradians. There are many contributors to pointing error, but the vibrational ^turba^oes in- 
duced by the effects of rapid maneuvers on flexible solar array structures are one ™)°*^™- 
In previous studies1'2 it his been shown that, assuming sufficient sensor and actuator Wwidth 
reaction  wheel  actuators  can  effectively  control  both  the  rigid  body  maneuvers  and 
fine-pointing/vibration arrest; however, the key issue is to perform the arge maneuvers in a 
torque-shaped fashion that minimizes disturbances of the flexural motion Judicious torque shap- 
ing must be coupled with stabilizing feedback control to null tracking and fine pointing.errors;rtus 
is The approach pursued herein. We seek to extend the developments of Ref. 12 to ^hsh a glo- 
bally asymptotically stable nonlinear control design approach of broad applicability to general 
three-dimensional pointing and tracking problems. 

• Graduate Research Assistart. Aerospace Engineering Department, Texas A&M University, College Sslion TX 77843. 
t Research Engineer at Santfs National Laboratories, Albuquerque, NM 87185. 
t George Eppright Chair. Professor of Aerospace Engineering, Aerospace Engineering Department, Teas A&M Un.vers.ty, 

College Station TX 77843, Fa'low AAS. 



In recent papers3"9, the utility of a new set of orientation parameters (the modified Rodrigues 
parameters, MRPs) has been studied. It has been shown that these parameters have some outstand- 
ing properties. They appear to be the canonical three parameter set, owing to the following remark- 
able truths: 

• The nonsingular motion range encompasses ±360 degrees, although the norm of the 
parameters tend to infinity as ±360 degrees rotations about any axis is approached. 

• For rotations within ±180 degrees about any axis, the parameters are bounded by a 
norm of+1. 

• The kinematic differential equations are quadratic nonlinear functions of the MRPs, 
and have no singular points for rotations less than ±360 degrees. 

• The transformation from orthogonal components of angular velocity to the time de- 
rivatives of the MRPs involves a coefficient matrix with orthogonal rows and col- 
umns, thus the inverse is analytic. 

• The MRPs are non unique, there are two trajectories corresponding exactly to a 
given physical motion. One of the trajectories at any instant of time lies within and 
the other lies outside a unit sphere. Both trajectories satisfy the same differential 
equations, only differing in initial conditions. 

Regarding the last property, it is easy to establish the transformation between the correspond- 
ing points on the two trajectories, and this fact can be utilized to establish, for the first time, a glo- 
bally nonsingular three parameter description of a generally tumbling rigid body. 

These properties, together with recent results from Lyapunov control law design methods , 
enable the formulation of a most attractive and effective family of control laws for spacecraft atti- 
tude maneuvers and fine pointing. The control law design methodology is important in its own 
right, as distinct from die use of the MRPs as orientation coordinates. In particular, however, this 
control law design approach is especially attractive for this coordinate choice. The feedback law is 
dominated by linear terms for this approach with a judicious choice of a logarithmic Lyapunov 
function5. The analytical results presented herein are illustrated through a simulation study which 
supports the efficacy and practicality of the concepts introduced. 

FORMULATION 

The Equations Of Motion For A Rigid Spacecraft 
The spacecraft is assumed to have three reaction wheels with distinct inertia aligned with the 

three body axes to control its attitude. Each reaction wheel inertia about the respective spin axis is 
given by 7- Let the inertia matrix 3 contain the spacecraft and the transverse reaction wheel iner- 
tia and let 'the matrix / be defined as 

r/i  0   0-j 
J=   0 J2  0 (1) 

.o o;3J 
Let &B/N be the spacecraft body angular velocity vector relative to an inertial frame N and let 

the Cl vector contain the angular velocities of each reaction wheel. The rotational equations of 
motion can be written as 

3^^ = -[öiWw]3«&/WV-[öi^]/(fi + ö«w)-ß+/ (2) 
at 

where the control vector ü also satisfies the reaction axial wheel equation of motion: 

ü=J(dä + d^A (3) 
\dt       dt   ) 

The tilde matrix [Ö] is defined as 
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[ü>]= 
0    -Ob   CO2 

(1)3     0    — coi 
-©2   coi      0 

(4) 

and the vector / is the sum of all external to -ques acting on the spacecraft. These torques are 
in part due to aerodynamic and solar radiation drag and are usually considered to be very small 
compared to the internal torques being applied. They are assumed to have a known bound F 
which is defined as \f{[ < F{. 

Attitude Coordinates 
4-9 

All spacecraft orientations are described using sets of modified Rodngues parameters    . 
They are a minimal coordinate representation of a rigid body attitude with several useful attrib- 
utes. They can be defined in terms of the Euler parameters (quaternions) as 

(5) 1=1.2,3 

or in terms of the principal rotation axis e and the principal rotation angle <|> as 

ö = e • tan (J)/4 (6) 

Obviously they go singular at a principal rotation of ±360° where ß0 -» -1 • What makes 
this set very attractive is that this singularity can be completely avoided by making use of the fact 
that the modified Rodrigues parameters are not unique. Notice that reversing the sign of the ß's in 
Eq. (5) generates a second set of o's. The alternate set is called the "shadow set' , and goes singu- 
lar at zero rotations and is very well behaved around the ±360° rotations. Hence, if a singularity is 
approached with the original set, one can switch the attitude description to the "shadow set" and 
avoid the singularity at the cost of having a discontinuity at the switching point. The transforma- 
tion between "original" and "shadow" set is * 

cf = - o,/öTö      i = 1,2,3 (7) 

Keep in mind that the choice in distinguishing "original" and "shadow" sets is purely arbitrary. 
Both sets describe the same physical orientation. In this study the switching condition was chosen 
to be ör6 = 1 . This causes the magnitude of the orientation vector to be bounded between 
0 < \a\ < 1 . In terms of a principal orientation angle this means that the angle is restricted to be 
within - 180° < $ < + 180° . Note that this combined set of "original" and "shadow" parame- 
ters implicitly "knows" the shortest way back to the origin. Lengthy principal rotations of more 
than 180° are avoided. This will be useful when designing a robust attitude feedback control law. 
Also note from Eq. (6) that for the range - 180° <(()< + 180° the modified Rodrigues parame- 
ters behave very linearly. The differential kinematic equation of motion in terms of the modified 
Rodrigues parameters is given below4,5. Note that the equation only contains second order polyno- 
mial nonlinearities in ö. 

f-IK1 -T- -cr 0 j + [Ö] + cöT (0 (8) 

Eq. (8) holds for both the "original" and the "shadow" set. This means that the derivative is 
well defined even at the switching point. The direction cosine matrix in term of the modified Ro- 
drigues parameters is 

-4(0?-of-of)+ 2?       8aia2+4a32: 8aiC3-4a22; 
8aiC2-4a3E      4(-a? + a^-a^) + E2        8a2a3+4aiL C(ö) = 

1 
r*\2 (l + örä) 8ai<j3 + 4a2E 

Z=l 

8a2a3+4aiE       4(-af ■o2 + oi) + 2?. 
(9) 
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OPEN-LOOP DYNAMICS 

Rest-to-Rest Principal Rotation Reference Maneuver 
Instead of doing a computationally expensive optimal control, all maneuvers performed will 

be about the principal axis of rotation. This will allow real-time pre-computation of the reference 
maneuvers. This solution is close to the optimal solution and much faster to compute. Euler's prin- 
cipal rotation theorem states that any reference frame can be related to another reference frame 
through a single-axis rotation. This theorem allows any three-dimensional rotation to be viewed as 
a single-axis rotation about the principal axis, as illustrated by the simple one-dimensional equa- 
tion shown below. 

39 = u (10) 

While certain gyroscopic coupling nonlinearities must be accounted for, since the actual mo- 
tion will be fully three-dimensional, Eq. (10) provides a simple approach to design a reference tra- 
jectory. Let N denote the inertial and R denote the open-loop reference frames. The initial and 
final reference attitude can be established by the initial and final direction cosine matrices 
[RN(to)] and [RN{tf)] in the sense 

f(tf)=[RN(tf)]n(tf), Kto) = [RN(to)]n(t0) (Ha,b) 

The rotation from the initial to the final position of the body axes is established by a direction 
cosine matrix [RR(tf, to)], where 

r(tf) = [RR(tf,to)]Kto), [RR(tf,to)] = [RN(tf)]VW(to)f (12a,t>) 

Euler's Principal axis of rotation is determined by finding the eigenvector of [/?/?(?/, fo)] 
which corresponds to the eigenvalue +1; that is, we find the components {l\,h,h}   of the unit 
vector satisfying 

[/W?(//,ro)]|fa| = |/2| = I (13> 

The principal rotation angle 9/ can be found by extracting the diagonal elements from the 
[RR(tf,to)]   matrix3.  We limit our principal rotation angles to be within 0° < 9 < 180° , 

which is done automatically when using the inverse cosine function below. 

Bf^cos(traCe{[RRft0)])-^ (14) 

The principal axis of rotation can also be found1, except near the zero and ±180° case, from 
the matrix elements of [RR(tfjto)] . 

,     (RR23-RR32) 
f=-±-\RRn-RRlA (15) 

2sm0/ [RRn-RRni 
Taking the inverse kinematics viewpoint, we can prescribe a reference trajectory 9r(f) as a 

rotation about the principal vector of [RR(tf, to)] . For the reference trajectory to conform with 
the desired initial and final attitude, it is necessary that 9r(/) satisfy the boundary conditions 
Gr(0) = 0 and9r(f/)=9/. 

Using the reference principal angle 9r (/) and the principal axis of rotation / , we can define 
the reference orientation, angular velocity and angular acceleration as 

p(t) = I  tan^P-, <br(t) = lQr(t), ^(r) = /ör(0 (16a,b,c) 
4 at 

where p(t) is a modified Rodrigues parameter vector which parameterizes the direction co- 
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• »^ofriv \RR(t, t^}    Given the above reference body angular velocity and acceleration and 

0 __3^_[är]3ar-[ör]/(ö,+ar) <17> 
a/ 

Near-Minimum-Time Maneuver 
The ootimal control for a rigid body minimum time maneuver is a "bang-bang" type control. 

For I^XTelt maneuver through a principal angle 6/ , the «bang-bang» control has the struc- 

ture:   
/      tt\ MSB/        /4fy"    *       _«mox 

«(0=wfc»('-f). tf=^— = ^. em« - 3 

where 9^ and iw are one-dimensional quantities measured along the principal axis of ro- 
Jmax 

tation. 
If we anticipate that the "bang-bang" control will excite significant vibration of the flexible de- 

grees offreS it is easy to smooth out the control switches using cubic sphnes and mtroduce 
"controllably sharp" torque switches using the smoothed "bang-bang control shape . 

fe)>-2(i))'     0<-'*°"t 

_1, tt<t<tf-oif = h 

8r(0 = Qmax 

1 ♦(^FH^))- •*•** 
where a controls the sharpness of the switches. a = 0 generates die«bang-bang instanta- 

neous torque switches and a = 0.25 generates the smoothest member of die family. After carry- 
ing out the double integration, the final maneuver time is found in terms of the principal[angle ro- 
tated 6/ , the maximum principal angular acceleration 9«« and the smoothing factor a. 

,/i!L __L_Z    fi^Ä («a*) f   ye^  l-2a + |a2 3 

The resulting principal angles and angular velocities can be seen in Figure: 1, where a = 01 
was chosen. Obviously the maximum increase of maneuver time ( for a =0.25) is less than 38%, 
compared to the "bang-bang" ( cc = 0)case. For a flexible spacecraft, due to the decrease m vi- 
brational energy, the actual maneuver time (including vibration settling time) is typically de- 
creased significanüy by using the smoothed "bang-bang" control Even though we are not specifi- 
cally considering the flexible spacecraft case at this point, we can implicitly consider flexibility by 
eliminating sharp torque switches which can be anticipated to "ring" the structure. Qualitatively, a 
sufficiently smooth and low amplitude torque history will make the most flexible structure behave 
more like a rigid structure and make the corresponding reference trajectory more trackable. 
These statements can be made quite rigorously, see for example1-*. For well-chosen reference ma- 
neuvers and tracking law design, maneuver times for flexible spacecraft can usually be kept within 
10 to 20% of the theoretical rigid body minimum maneuver times. 
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Figure 1 A Sample Torque Shaped Family of Near "Bang-Bang" Maneuvers 

Near-Minimum-Fuel Maneuver 

The torque time history of a optimal rigid body minimum-fuel maneuver consists of a sharp 
initial impulse to get the spacecraft rotating, a long coasting period, followed by a sharp reverse 
impulse to arrest the motion. Naturally, these sharp impulses would cause havoc for a highly flex- 
ible structure. Therefore a smoothed "bang-off-bang" control is chosen similar to the 
near-minimum-time maneuver presented previously. 

\2i 

Ui(J \        UifJJ' 

0r(O — Qmax 

1, 

m-m 
0, 

-mnm 
-i, 

-m-m 

0<t<a.\tf 

a.\tf<t<a.\tf + a2tf = h 

t\ <t<2aitf + a2tf = t2 

t2<t<tf- 2a.xtf - a.2tf s r3 

/3 < t < tf - a, tf - a2// H t4 

U <t<tf-axtf=t$ 

t5<t<tf 

(20) 

The instantaneous control switches are replaced by cubic splines with the rise and decay shape 
having controlled sharpness. Hence two torque smoothing factors (Xi and a2 are used. The fac- 
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tor <Xi determines the rise or fall time from or to the maximum torque to zero torque as a percent- 
age of the total maneuver time. The factor (X2 determines how long maximum torque is applied, 
also as a fraction of the total maneuver time. The amount of fuel used is chosen implicitly by spec- 
ifying the two parameters (Xi and a.% . 

The total maneuver time for the smoothed "bang-off-bang" control is found again by twice in- 
tegrating the one dimensional principal rotation equation. 

[ÄÖf 
cxi + oc2 - 2oc? - 3ctiOC2 - a|' 

ömflX — 
"mai (21a,b) 

The sample time history of principal angular acceleration, velocity and the principal angle for 
a smoothed "bang-off-bang" control is shown in Figure 2, where Cti = (X2 = 0.1 were chosen. 
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Figure 2 A Sample Torque-Shaped Family of Near "Bang-Off-Bang" Maneuvers 

Incorporating Angular Velocity At The Final Maneuver Time 

The principal rotation maneuver presented only applies to a rest-to-rest maneuver. To track a 
landmark, it is desired that the body have a certain angular velocity Cö(//) at the end of the ma- 
neuver. This allows the spacecraft to keep the sensors pointing toward a location on Earth for a fi- 
nite duration of time and essentially achieve gross "motion compensation" for smear-free imaging. 
To accomplish this, the reference motion will be described relative to a moving target frame, not 
the inertial frame. Three coordinate frames are used: 

R: open-loop reference coordinate axes (or follows the desired trajectory) 
T:   target motion coordinate frame 
N: inertial coordinate frame 
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Let SiT/N be the body angular velocity vector of the target frame. In order to match up with 
our desired motion, the target frame T must have the following constraints. 

ÖT/N (0) = 0       &r/N(tf) = 6%) (22a,b) 

[TN(tf)] = [RN{tf)] (23) 

Since the rest-to-rest principal rotation is described relative to the T frame, these conditions in- 
sure that the actual reference motion will have zero inertial angular velocity at t=0, and the desired 
orientation and angular velocity at the maneuver end. 

Besides these three conditions any target motion can be chosen. The target motion used in this 
study was chosen to be a pure spin rotation about the <b(tf) axis, since an analytic solution exists 
for this trajectory. The orientation of the T frame at any time t is given as 

[TN(t)] = [Tr(t,tf)}[TN{tf)] (24) 

where the matrix [7T(f, //)] describes the pure spin motion away from the final target posi- 
tion. Let the modified Rodrigues parameter vector £r parameterize the [TT(t,tf)\ matrix with 
the condition that pT{tf) = 0 . The unit vector lT is the principal axis of the target motion and 
is defined as 

fr=M (25) 

and QT is the target principal rotation angle. The target motion pT(t) is then defined as 

/5r(r) = /r-tan^ (26) 

where 6r(f/) = 0 . To match initial and final conditions of the target angular velocity a 
cubic spline was used. By choice, this will result in the reference motion having no angular accel- 
eration at the maneuver end, but this is not a requirement of the method itself. Any target angular 
velocity history that matches the conditions in Eqs. (22a,b) could have been used. The target angu- 
lar velocity and acceleration are defined as: 

<&r/*(0 = l^/^(^/)l(^)2(3-2^) * & (27) 

dmr/NJt) _ \är/N(tf)\ L t      11\2\   f (28) 
dt tf      \  tf     \tf) ) 

After once integrating Eq. (27) the target principal rotation angle is found. 

Gr(r)=^i^-^4)        *>*'**' , (29) 

The relative position of the reference frame to the target frame is given by the matrix [KT(t)] 
which is found through 

[RT(t)] = [RN(t)]{TN(t)f (30) 

At the times to and // the relative orientations are defined as 

[Rnto)] = [RN(to)][TN(to)]T (31) 

[RT(tf)] = [/W(r/)][77%)f =/ (32) 

Eq. (12b) is now rewritten as 
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[RR(tf,to)] = [RT{tf)][Rnto)}T = [Rnt0)f (33) 

The matrix [RR(tf, t0 )] defined in Eq. (33) is used to define the rest-to-rest principal rotation 
motion for the case where the reference motion is supposed to have a final angular velocity. 

Given the maneuver time // , we would be able to accurately describe the complete target mo- 
tion. To find tf though, we need to know the [RR(tf, t0)] matrix first, which itself depends on 
the target motion. Since we only know the final, not the initial target position in advance, no 
closed form solution is available to find tf . An iterative method was used to find the maneuver 
time The initial estimate for tf was found by assuming complete rest-to-rest motion. Using this 
tf a new [RR(tft t0)] matrix was found and with it a new tf . This method converged very 
quickly if half of the difference between old and new tf was added to the old tf . 

The matrix [RT(t)] is given as 
[RT(t)] = [RR«,to)][Rnt0)] (34) 

where the [RT(t0)] matrix was defined in Eq. (31). The desired reference motion relative to 
the inertial frame is found from Eq. (30) to be 

[RN(t)] = [RT(t)][TN(t)] (35) 

where the target motion [TN(t)] is given in Eq. (24). 
The angular velocity and acceleration expressed in Eq. (I6b,c) are now expressed relative to 

the target frame motion. Hence, let us relabel these quantities as expressions relative to the target 
frame as 

where the superscripts indicate in which coordinate frame the vectors are written. The refer- 
ence angular velocity expressed relative to me inertial frame is given as 

ä&* = S^ + [*7ia?/w (37) 

To find the reference angular acceleration relative to the inertial frame, the inertial derivative 
of Eq. (37) is taken. 

T (38) 
_aufyr 

For the limiting case where the target frame has zero motion, Eqs. (37) and (38) collapse back 
to the rest-to-rest case given in Eqs. (16b,c). 

CLOSED-LOOP DYNAMICS 

Lyapunov Method To Design Nonlinear Tracking Control Law 
A nonlinear tracking control law is developed to assure that the reference trajectory is asymp- 

totically tracked. One advantage of this nonlinear control law over other control laws is that it is 
globally, asymptotically stabilizing! The control law has inherently no restrictions on the size of 
the attitude or the angular velocity error. Secondly, through the choice of the amtude coordinates, 
this control law will bring a body, which has tumbled beyond ±180° from the reference motion, 
back to the reference trajectory through the shortest angular distance. The three coordinate frames 
used are: 

B:  actual spacecraft coordinate frame 
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R:  reference coordinate axes 
N: inertial coordinate frame 
Let the [BR] matrix define the relative attitude of the spacecraft to the reference frame. It is re- 

lated to [BN(t)] as 
[BR] = [BN][RN]T (39) 

Let the modified Rodrigues parameter vector C parameterize thr direction cosine matrix 
[BR] This vector defines the orientation error of the spacecraft relath- to the reference frame; 
achieving G -> 0 assumes asymptotic tracking of the reference motion. The extradition of the G 
vector from the [BR] matrix is easily accomplished by use of the ßo Euer parameter. The com- 
plete transformation is given below. 

2PQ= + Jtrace(lBR]) + l 

BR73-BR32 
Gl~4ßo(l + M (40x 

Cl     4ßo(l + ßo) 
BRiz-BR2\ 

G3"4ßo(l + ßo) 
By assuring that ßo ^ 0 we are guaranteed to have a modified Rodrigues vector with 

|d| < 1 . By using the modified Rodrigues parameters to describe xbt error in orientation, the 
feedback control law will inherently know the "shortest way" back to tbi reference frame. As an 
example, if the spacecraft has rotated a principal rotation of +200° off rom the reference condi- 
tion, the control law will know to let the spacecraft complete the rotation. It will perform a +160 
principal rotation instead of a -200° maneuver, bringing the spacecraft ba± to the reference state 
"the short way round" . 

Obviously, it is desired to make tiie body frame track the reference fame, and thus the objec- 
tive of the tracking control law should be to make any departure motion C vanish. Let all the fol- 
lowing vectors be written in the body frame B, unless noted otherwise. The error in body angular 
velocity is given as 

8a = %w-[BÄ]fflJw (41) 

The reference body angular velocity vector must be transferred into tie body frame, since it is 
only given in the reference frame R. The error in body angular acceleration is found by taking the 
derivative of Eq. (41). 

4(8(0)" = ±-{<hBINf -[BR]±-((hR,N)N + [^Bfff]iBRl^/K (42) 
at at at 

The Lyapunov function for the feedback control law is defined to be 

V=-Sör35ä + 2Klog(l + o7'ö) (43) 

where AT is a scalar gain for the altitude error feedback. Using the lcaarithm of the departure 
motion will result in a feedback control law which is linear in ö . As Tsiotras points out in Ref. 
5, this remarkable fact occurs becaose d/dt(2\og(l +Örö)) = 5ö Ö .To guarantee global 
asymptotic stability, let us verify that the first time derivative of V is negarve definite. 

V = c^T3-(oä>)"+/i:-5cörö (44) 
dt 

Substituting Eqs. (42) and (2) into Eq. (44) yields 
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V = 5ör(-[ö)ß/iv]3cüB///-[S)W]7(n + ä)ß///)-M+/ 

dt ' 

After defining the control torque vector ü to be 

i^ =-^[[BR)jt{G^Nf -[(bB/N^BR}^) (46) 

where F is defined as 
Ft = Ft • sgn(8S>,-)      / = 1,2,3 (47) 

and the matrix P is a positive definite angular velocity feedback matrix, and substituting ü 
into Eq. (45), V' is shown to be negative definite. 

V = -8corP5a-8ar(F-/)<0     V8ö,ö*0 (48) 

For clarity, all vectors were labeled with their corresponding coordinate frame in Eq. (46). 
The control torque given above is dominated by linear terms in the position error C and the angu- 
lar velocity error Sä . It guarantees global asymptotic stability during both the tracking and the 
end game phase, assuming, of course, negligible model errors and perfect state measurements. 
Proper gain selection will result in a good rejection of model and external disturbance errors. 

Because of the sgn function in F this control law could cause some chattering if the angular 
velocity measurements are noisy. If the magnitude of F is small enough though, this should not 
pose any practical problems. Having the F term in the control law does guarantee asymptotic con- 
vergence of the states to the target motion, even with unknown external forces present. 

Control Feedback Gain Selection 
Assuming zero external torques, the closed-loop dynamics are found by substituting Eqs. (2) 

and (42) into Eq. (46). The resulting differential equation only depends on the attitude error G 
and the body angular velocity error 65). 

±- mf = - K • 3"1 ö - 3"1 P5fi> (49) 
dt 

Note that the differential equation for 5ö> is linear without making any approximations. The 
nonlinearity of the closed-loop dynamics come in through the coupling with d . If C - 0 .then 
the poles of Eq. (49) could be arbitrarily chosen. The differential equation for Ö depends quadrati- 
cally on Ö and is given by: 

f4['N^HH 5a> (50) 

After linearizing Eq. (50) about Ö = 0 , the following approximation is obtained 

da    8S> (51) 

dt      4 

Remember that the modified Rodrigues parameters act like angles over four. This fact is vis- 
ible again in the above approximation. Because of this, the linearization using modified Ro- 
drigues parameters will be valid for twice the rotation range compared to the classical Rodngues 
parameters, and four times the range over the most attractive set of Euler angles. After combining 
Eqs. (49) and (51), the following closed-loop system equations of motion are found: 
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[   °      *7 If5 1 (52) 

Given an arbitrary inertia matrix 3 , a root-locus method could be used to find the poles of 
Eq. (52). The roots cannot be placed arbitrarily because K is only a scalar gain. If the inertia ma- 
trix 3 and the angular velocity feedback matrix P are chosen to be diagonal matrices, then Eq. 
(52) can be decoupled into three sets of two equations 

0 

[odj " -£ -% W 1=1,2.3 

whose roots can be solved explicitly as 

X = - 
1 frfJHi and 

(53) 

(54) 

Note that the only approximations made in the above analysis are the linearization of Eq. (50) 
and the assumption of a diagonal inertia matrix 3 . Since the linearization of the modified Ro- 
drigues parameters are valid for four times the rotational range of the Euler angles, and the off di- 
agonal terms in the inertia matrix are usually very small compared to the diagonal terms, this line- 
arization will typically predict the dynamics of the nonlinear system for moderately large tracking 
errors. 

Figure 3 shows the root-locus plot of Eq. (54). A separate p. can be chosen for each body 
axis, but only one attitude error feedback gain AT can be chosen. 

Im 

K = 0 

6— 
EL 
3/ 

Pi 
23/ 

K = 0 

/    Re 
0 

Figure 3 Root-Locus Plot of the Decoupled, Linearized Error Dynamics 

Assuming that the closed-loop dynamics will be slightly under-damped, we can write the angu- 
lar velocity feedback gains p; in term of the controller decay time constants Tc - 

o« ln2 
A=23( — » = 1,2,3 (55) 

The scalar attitude feedback gain K is still free to be chosen. For the close-loop dynamics to 
be under-damped, the condition on K is 
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K>EL      i= 1,2,3 (56) 

Note that both K and pi determine whether the closed-loop dynamics are ov~.r-, critically-, or 
under-damped. But if the system is under-damped, then only pt determines how fast a state error 
will decay. On the other hand, the gain K influences the frequency of the oscillations coC(. . 

G>, >•*!£$ '-«■(«♦(tf »'=1,2,3 (57a,b) 

Control Gain Scheduling 
To avoid reaction wheel torque saturation, the feedback gains are lowered whenever the 

system motion error is too large. We suggest a simple heuristic for gain scheduling, which can be 
sophisticated as necessary. The total system error is calculated as a weighted sum of the attitude 
and angular velocity error vectors. 

error =|8fi)| + K-|ö| (58) 

If this measure of tracking error exceeds some nominal value, the gains are lowered to some 
smaller values. Whenever the error is within the nominal value, the gains are then raised again to 
their original values. This assumes only two sets of gains, obviously more than two sets could be 
used. 

The body angular velocity feedback gain matrix P can also be permitted to vary with time 
without any loss of stability of the control law given in Eq. (46). The only requirement is that P re- 
mains positive definite. The attitude feedback gain K, however, was considered to be constant dur- 
ing the stability study. Allowing K to vary in time, Eq. (44) is rewritten as 

V = Scor (S - (Sä)" + Kö\ + ÄT21og( 1 + öTö) = - SäfPScö + ÄT21og( 1 + örö) (59) 

If K is changed from a high gain to a low gain, (i.e. a large system error is present), K is nega- 
tive and stability is still guaranteed during the transition phase. Only if K is changed from a low 
gain to a high gain, where K > 0 , is stability possibly not guaranteed. If AT is large enough, V 
could become positive. However, since the transition will occur over a finite period of time, over- 
all stability is not compromised. Also, the maximum positive K is computable at any time to 
satisfy V < tolerance as 

Anvir — 
tolerance + 5ö> P 5ffl 

21og(l + örö) 
(60) 

Obviously instantaneous jumps in feedback gains should be avoided, because they would 
cause excessive ringing of the flexible structure. To control the smoothness of the feedback gains 
time history, a digital low-pass filter is added. Any jumps in feedback gains are thus filtered out to 
a smooth curve with a controllable rise of K . 

STATE ESTIMATION 
The purpose of this nonlinear estimator is to cancel any measurements errors in thebody atti- 

tude vector q (given in modified Rodrigues parameters) and the body angular velocity Ö , even m 
the presence of an unmodeled external torque / and a gyro rate bias b _. Let the measured states 
be denoted as Xm , the estimated states as Xest and the actual states as X. 

X-m ~ 

[~4m] [<lest ' r?] 
Ö« Xest — f0Mt X = CO 

-bm - -best - LjJ 
(61) 
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The rate gyro bias b is assumed 10 be constant for small time intervals, thus having the follow- 
ing kinematic equation 

d-{b)=0 (62) 
dt 

Let the estimator error be defined as 

I = Xax -X = 
Aq- 
AS) 

■Ab- 

From Eqs. (2,8,62), the actual system dynamics can be written as 

|w**w- 
0 

3"1« 
L 0 

0 
d 

LO 

(63) 

(64) 

where the F() function contains the dynamical system. The angular acceleration d due to the 
unmodeled external torques is defined as 

5 = 3-7 (65) 
and is assumed to have a known bound D satisfying Z)/ > d\ . If the bounds of the rate gyro 

bias error Ab and of the angular acceleration due to external forces d are known, then the follow- 
ing dynamics of the estimated state scan be shown to be asymptotically stable for arbitrary large 
estimated state attitude and angular velocity errors. 

l<*~K*"~[5!rJHs;H~ r
£*i ( rO ■] 

E& — H Xest — Xm + best 

LO J \ Lo J 
(66) 

The estimator feedback gain matrix H is positive definite and partitioned as 
IHn #12 #13' 

#21 #22 ^23 

#31   #32  #33- 

Similarly to Eq. (47) of the feedback control law, the vectors Eq and EQ are defined as 

[£g]/=m£x(abs(i#12A5mai]/))-sgn(A§/) (67) 

[EG,]. = max(£bs([#22^,^],.) + Ä) • sgn(Aty) (68) 

The asymptotic stabihty of Eq. (66) is proven with the Lyapunov function 

1   T 

2 
(69) 

Let the measured states be broken up into the true states, the random white noise v and the 
rate bias components. 

Xm=X + v + 
■0 
b 

LoJ 
(70) 

By enforcing the asymptotic stability requirement V < 0 and by making use of Eqs. (63), (64) 
and (66), the following asymptotic stability condition is found. 

eMFJX + v- A5 \-F(X)+ffi\-&f(E9 + HaAS) 

- Aör (£ö + d + En Ab) - AbTH33Ab < eTHe 

(71) 
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Note that since H is positive definite, the right-hand side (RHS) of Eq. (71) will always be 
ereaVer than zero for e * 0 . Assuming there is no measurement noise no rate gyro bias and no 
SerJexternal torques, than the estimator dynamics in Eq. (66) is globaUy asymptoücally 
stable We offer the following qualitative observations regarding tumng of the estimator. 

If an unmodeled external angular acceleration d is present with a known bound D , then the 
estimator d™aSare still stable, since the_A<jr term of the left-hand side (LHS) is guaranteed 
Zte nSativeTefinite by the definition of E-q . Stability is still guaranteed for any positive defi- 
nite H and any estimated attitude and angular velocity errors. 

If a rate bias B is introduced with a bounded error AS , then H can no longer be arbitrarily 
small. The first term of the LHS could be positive. The estimator feedback g™tax^u.be 

chosen large enough such that eTHe is always larger than the first term of the LHS. Thesecond, 
Surd and fourth term of the LHS are guaranteed to be negative definite by the definition of Eq 
and £ö , and because H33 is positive definite. 

Once white measurement noise is introduced, the estimated stetes will not converge to.the.ac- 
tual states of course, but will oscillate about them. While doing discrete sampling, of die states at 
AT intervals, the dominant noise term of the estimator dynamics is Hv The actual jump due to 
noise from one sample to another is bounded by HvmaxAt. To.further adjust the filter charactens- 
Scs tne s^pHng time interval can be tuned. The measurement noise also has a second degrading 
effect. It may cause the sgn functions in Eqs. (67,68) to return an incorrect sign of A4, and ACO/ 
This will cause a secondary noise induced effect of the estimated states between samples, of Ae 
order of EfAt and E&At respectively. Again the filtering errors are controlled by choosing the 
sampling interval. 

Under- and over-damped estimator dynamics were compared. For a given decay time con- 
stant the over-damped system was better able to cancel measurement noise than the under- 
damped system. To assure that all the attitude and angular velocity measurement errors decay at 
the same rate, the estimator feedback matrix H was chosen to be of diagonal form. 

rHcs,  I     0       On 
0     H„-I   0 (72) 
0 0      HB] 

Writing the estimator feedback gain Hest in terms of an estimator error decay time constant 
we get 

Ti    -IE2. (66) 

The estimator feedback gain HB can have a much larger decay time constant than Hest , 
since the rate gyro bias is assumed to change very slowly. Having a small HB helps m reducing 
the secondary noise effect for the rate gyro bias estimation. In practice, we may use the above esti- 
mation algorithm to baseline a Kalman-Filter, or other linear state algorithm, appropriate tor 
real-time on board implementation. 

RESULTS 
The following figures show the results of rigid body rotation simulation. The body inertia ma- 

trix 3 has only diagonal entries of 200 kgm2,200 kgm2 and 118 kgm corresponding to the first, 
second and third body axis. The spacecraft has three reaction wheels aligned with the bpdy axis 
whose inertia about the rotation axis are 0.00955 kgm2, 0.1240 kgn/ and 0.00955 kgm^respec- 
tively. The maneuver takes the spacecraft (in 3-2-1 Euler angles) from (-4 ,-55 ,4 jl to 
(4° 55°,-4°). The rotation is mainly about the pitch axis with some slight yawing and rolling. The 
craft starts out with zero angular velocity and is required to have a final angular velocity of -1 /s 

15 

H = 

236 



about the pitch axis at the end of the maneuver. The error in initial attitude and angular velocity is 
(-0.05°,0.8o,0.05°) and (-0.025°/s,0.1°/s,0.0257s). 

The feedback control law was chosen to have a time constant T of 4 seconds and an attitude 
feedback gain K of 44. This results in the feedback response in the pitch and yaw axis hiving a 
damped frequency of 9.05 °/s, and the roll axis having damped frequency of 14.4 °/s. The estima- 
tor time constant 7V. was set to be 0.4 seconds, an order of magnitude faster than T . The initial es- 
timated 3-2-1 Euler angles were (-4.r,-55.5°,3.95°). The attitude noise measurements were sub- 
jected to random noise of the magnitude of 4e-5 (given in MRP). The initial estimated body angu- 
lar velocities were (-0.02°/s,0.15°/s,0.03°/s). The angular velocity measurement noise level was 
set to 5e-5 °/s. 
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Figure 4 Open- and Closed-Loop Attitude for 2nd Body Axis 

The total maneuver time was 104.09 seconds. Figures 4 and 5 show the attitude time history 
in MRP space. The closed-loop motion accurately tracks the open-loop trajectory. Figure 4 shows 
the large pitching maneuver. Since a final negative angular velocity is required about the 2nd body 
axis, the craft has to rotate beyond the target attitude and return to it with the desired angular veloc- 
ity. The open-loop maneuver designed in this paper performs this task in a very smooth and 
near-optimum fashion. 

ft! 

u 
s 

« 

50     60 
time [s] 

90    100    110 

Figure 5 Open- and Closed-Loop Attitude for 1st and 3rd Body Axis 

Figures 6 and 7 show the time history of the angular velocities. The open-loop maneuver cor- 
rectly ends with a zero angular velocity about the 1st and 3rd body axis, and with -l°/s about the 
second body axis with no angular acceleration. If a final angular acceleration is required, this 
could easily be incorporated into the target trajectory used to generate the open-loop motion. 
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The initial state errors are canceled by the feedback control law and the open-loop trajectory is 
tracked accurately. 
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Figure 6 Open- and Closed-Loop Body Angular Velocity for 2nd Body Axis 
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Figure 7 Open- and Closed-Loop Body Angular Velocity for 1st and 3rd Body Axis 

Figures 8 and 9 show the time history of the internal control torque exerted onto the three reac- 
tion wheels. The maximum torque encountered is 0.3108 Nm by the second reaction wheel. The 
measurement noise is not visible in Figure 4 because of the relatively high torques. The 
closed-loop time history appears smooth and asymptotically approaches the open-loop torque time 
history. 
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Figure 8 Open- and Closed-LoopControl Torque for 2nd Reaction Wheel 
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The measurement noise is visible in the time histories of the 1st and 3rd reaction wheek since 
they are only exerting relatively low torques. But even here the noise is small compared to the 
JorquSan!does not pose any fine pointing problems. The closed-loop time history still asymptot- 
ically approaches the open-loop control torque. 
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Figure 9 Open- and Closed-Loop Control Torque for 1st and 3rd Reaction Wheels 

Figure 10 shows the time history of the attitude tracking error between the estimated states 
and the open-loop states. The linearization used to find the controller feedback gains very accu- 
rately models the actual nonlinear feedback dynamics. The decay time consents and the damped 
frequencies match with the simulation very well. As predicted, the 1st axis has a higher damped 
frequency than the 2nd and 3rd axis. 
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Figure 10 Closed-Loop Attitude Tracking Error 

Figure 11 shows the time history of the angular velocity tracking error. Similar observations 
as with the attitude tracking error can be made. In both cases the initial state error is asymptoti- 
cally canceled. The error is effectively gone after about 20 seconds. The measurement noise lev- 
els are too low to be visible on these figures. 
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Figure 11 Closed-Loop Body Angular Velocity Tracking Error 

Figures 12 and 13 show the time>»»^^^£££%S* 
mated states and the actual states. Again the predicted eümator rp ^^ 
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CONCLUSIONS 
A nonlinear feedback control approach has been developed for arge three-dimensional rota- 

tional maneuvers. A unique coordinate choice and the use of Lyarsnov control design methods 
are the key new ingredients blended to produce these results. To avrid exce save ringing of the 
structure, the near-niinirnum-time and near-minimum-fuel reference control torques were 
smoothed with cubic splines. 

The feedforward/feedback control law presented is globally asymptotically stable, even under 
the influence of unmodeled, external torques with a known bound The nonlinear estimator has 
proven Lyapunov stability, and asymptotic stability in the absence öf measurement noise. It is 
also able to compensate for unmodeled external torques and rate gyro oiases. 

The actual closed-loop controller and estimator feedback dynarics matched very well with 
the dynamics predicted in the feedback gain selection sections, sines only the attitude dynamics 
had to be linearized Because of the choice of attitude coordinates, the modified Rodngues param- 
eters, this linearization is valid for a range of attitude errors four tims larger than if Euler angles 
were used, and two times larger than if the classical Rodngues paramisrs were used. 

The maneuver demonstrated was able to track the open-loop tiajesoiy asymptotically and can- 
cel any initial state or estimator errors. 

REFERENCES 
[1]     Junkins, J. L, and Kim, Y., Introduction to Dynamics and Control of Flexible Structures, 

Al AA Education Series, Washington D.C., 1993. 
[2]     Junkins, J. L, Rahman, Z. H.. and Bang, H., "Near-Minimum-Trne Maneuvers of Distributed 

Parameter Systems: Analytical and Experimental Results," Journal of Guidance, Control, 
and Dynamics, Vol. 14, No.2 (March-April, 1991), pp.406-415. 

[3]     Junkins, J .L, and Turner, J. D., Optimal Spacecraft Rotational Maneuvers, Elsevier Science 
Publishers, Netherlands, 1986. 

[4]     Schaub, H.. and Junkins, J. L, "Stereographic Orientation Paraneters for Attitude Dynamics: 
A Generalization of the Rodrigues Parameters," AAS/AIAA Spaceflight Mechanics Meeting, 
Albuquerque, New Mexico, Feb. 13-16,1995, paper AAS 95-137. 

[5]     Tsiotras, P. "New Control Laws for the Attitude Stabilization oi Rigid Bodies," Proceedings. 
IFAC Symposium on Automatic Control in Aerospace, Palo Alt, CA, Sept. 12-16,1994, pp. 
316-321. 

[6]     Schaub, H., TsSotras, P., and Junkins, J. L, "Principal Rotation. Representations of Proper 
NxN Orthogonal Matrices," to appear in International Journal of Engineering Science, 1994. 

[7]     Marandi, S. R., and Modi, V. J., "A Preferred Coordinate System and the Associated Orienta- 
tion Representation in Attitude Dynamics," Ada Astronautics, Vd. 15,1987, pp. 833-843. 

[8]     Wiener, T. F, Theoretical Analysis of Gimballess Inertia! Reference Equipment Using 
Delta-Modulated Instruments," Diss. Massachusetts Institute of *schncäogy, March 1962. 

[9]     Shuster, M. D.. "A Survey of Attitude Representations," Journal of she Astronautical Sci- 
ences, Vol. 41, No. 4,1993, pp. 439-517. 

[10]   Crist!, R., Burl, d, and Russo, N., "Adaptive Quaternion Feedback Regulation for Eigenaxis 
Rotations," Department of Electrical and Computer Engineering. Naval Postgraduate School, 
Monterey, CA, June 1993. 

20 

041 



JOURNAL OF GUIDANCE, CONTROL, AND DYNAMICS 
Vol. 18, No. 4, July-August 1995 
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Youdan Kim* and Seungjae Lee* 
Seoul National University, Seoul 151-742, Republic of Korea 

and 
John L. Junkins* 

Texas A&M University, College Station, Texas 77843-3141 

Analytical expressions are developed for computing eigenvector derivatives, specialized for the case of me- 
chanical second-order dynamic systems. Both exact and approximate formulations are developed using a modal 
expansion approach. The new exact formulations are found to be numerically accurate and to require significantly 
less computing time than the corresponding generalized formulations. An improved approximate method is also 
introduced for computing a truncated set of eigenvector derivatives for large structural systems. Numerical ex- 
amples are included to evaluate the effectiveness of the approximate formulations, and they are found to be very 
efficient in the cases studied. 

L   Introduction 
FOR many analysis and design problems in engineering system 

analysis, including applications such as identification of dy- 
namic systems,1-2 redesign of vibratory systems,3-6 and design of 
control systems by pole placement,7-12 it is widely known in the 
engineering literature that eigenvalue and eigenvector derivatives 
with respect to design parameters are useful. 

In the past 20 years, several algebraic methods for computing 
eigenvector derivatives have been studied by many researchers.13-17 

Nelson13 has proposed an algebraic method for computing eigen- 
vector derivatives. In this formulation, the eigenvector derivatives 
can be computed using only the eigenvector of interest together 
with some algebraic manipulation. Fox and Kapoor14 present ex- 
pressions for the rates of change of eigenvalues and eigenvectors 
with respect to the design parameters of the structured Recently, 
Lim et al.u re-examined this problem and provided a new formula- 
tion for computing eigenvector derivatives and also established im- 
portant relationships between left and right eigenvector derivatives. 
Dailey16 presents an algorithm for computing eigenvector deriva- 
tives for real symmetric matrices in the case of repeated eigen- 
values. Improved approximate methods for eigenvector derivatives, 
using only an available subset of mode shapes, are presented15,17 

for extremely large systems. All the above formulations are derived 
for the general non-self-adjoint systems under the assumption that 
matrices, eigenvalues, and eigenvectors are differentiable, except at 
isolated points; most applications reported have been to mechanical 
dynamic systems. 

It is widely known that the dynamics of a large class of mechani- 
cal systems can be represented most naturally by second-order sys- 
tems of differential equations with several special properties. For 
applying optimization or iterative design ideas to these systems, the 
second-order differential equations are usually transformed into a 
higher dimensioned first-order state space. Since the dimension of 
aerospace structural dynamic systems is usually large, one often 
encounters uncomfortably high computational burden to compute 
eigenvector derivatives using any of the available formulations. Note 
that eigenvector derivatives are central features for many algorithms 
utilizing iterative methods that modify the eigenstructure, and the 
computation time per iteration is very important. 
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There exist several properties of the system matrices describ- 
ing mechanical systems that we exploit in the present paper to 
significantly reduce the computational burden. In this paper efficient 
formulas for computing eigenvector derivatives for a large family of 
mechanical second-order systems are derived by eliminating some 
unnecessary steps that are associated with transforming the differ- 
ential equations into a first-order state space and applying general- 
purpose algorithms. Note that Fox and Kapoor's formulation14 

reflects structural characteristics instead of treating general eigen- 
value problems. Therefore it can be easily applied for optimum 
design of structures. However, damping characteristics are not con- 
sidered in their formulation, and therefore it is basically a special 
case of Lim et al. formulation.15 In other words, Fox and Kapoor's 
formulation14 cannot be applied for both the control law design 
problem and the structural optimization problem, since, in the gen- 

. eral setting, both of these problems include artificial or aerodynamic 
damping. Since our formulation includes linear damping character- 
istics, it can be utilized for solving a large class of optimization 
problems concerned with mechanical second-order systems. A nu- 
merical study is included to evaluate the effectiveness of the new 
formulations. An improved method for approximating a truncated 
set of eigenvector derivatives for large structural systems is also 
presented and its utility is evaluated. 

II.   Eigenvalue Problems and Modal Derivatives 
Consider a linear structure (modeled by a finite element or similar 

discretization scheme) in which the configuration vector x is gov- 
erned by the system of linear second-order differential equations 

Mx(t)+Cx(t)+fCx{t) = Du(t) (1) 

where M. is the n x n positive-definite symmetric mass matrix, C 
is the n x n positive-semidefinite symmetric structural damping ma- 
trix that can be diagonalized via modal coordinate transformation, 
K. is then x n positive-semidefinite symmetric stiffness matrix, and 
D is the n x in control influence matrix. 

The closed-loop system can be written as 

Mx{t) + CxQ) + Kx(t) = 0 (2) 

8#2 

In a control design problem, the control law usually feeds back po- 
sition and velocity information, and mass matrix M maintains its 
constant, symmetric, positive-definite characteristics, but the damp- 
ing and stiffness matrices C, K will be changed by feedback such 
that the open-loop symmetry and definiteness characteristics are not 
generally guaranteed. In a structural optimization problem, all ma- 
trices will most generally be perturbed, but M, C, K will maintain 
their symmetry and definiteness properties over all admissible de- 
signs. In all cases where we consider eigenvector derivatives with 
respect to system parameters or control gains, the system matrices 
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M, C, K will be assumed to be analytic functions of the system 
design parameters or control gains. . 

Generalized Eigenvalue Problem 
In order to solve eigenvalue problems for mechanical second- 

order systems, Eq. (2) can be transformed to the standard first-order 

state-space form 

[i SH-« -M 
or 

where 

Bi = Az 

(3) 

(4) 

Equation (4) represents the generalized eigenvalue problem for the 
given system, and in this paper, only nondefective systems that have 
a set of n linearly independent eigenvectors will be considered. 

We observe that there is an infinity of possibilities implicit in the 
above transformed equations; the matrix L is at this point unspeci- 
fied. For selection of the L matrix, we must consider the impact of the 
selection of L upon numerical accuracy and efficiency in comput- 
ing eigenvalues and eigenvectors; a symmetric nonsingular matrix 
is widely used for convenience. In the structural dynamics literature, 
the most popular choices for L are either the mass matrix M or the 
stiffness matrix K. If the system includes rigid-body modes, then 
the K matrix will be singular with the dimension of the null space 
being the number of rigid-body degrees of freedom, and therefore, 
the mass matrix M is a better candidate for those systems. Note that 
for the L = M case, the B matrix is always a constant positive- 
definite symmetric matrix for the general control design problem 
(assuming the control law utilizes only position and velocity infor- 
mation for feedback). On the other hand, for the L = K case, the B 
matrix will be modified during the structural optimization process 
and the symmetric property is generally lost due to feedback. Note 
that if B is ill-conditioned, then this can rule out the possibility of 
computing any generalized eigenvalue accurately (Ref. 18, p. 395). 
Since the condition number of a matrix provides a useful measure 
of numerical accuracy in matrix manipulations, it would be useful 
to discuss the condition of the B matrix for the selected L matrix 
briefly. Our experience with such studies indicates that the condi- 
tion number of the B matrix for the L -M choice is typically 
smaller than that for the L = K case; the common existence of 
many low-frequency eigenvalues is associated with a nearly rank- 
deficient stiffness matrix. This practical point of view indicates that 
constructing the B matrix using L = M will usually lead to better 
conditioned computations and more accurate numerical results than 
using L = K. For low-dimensioned problems with no rigid-body 
degrees of freedom, the condition of all system matrices is typically 
good, and therefore the stiffness matrix can be used in this situation 
for L with excellent numerical efficiency and also without degrad- 
ing the numerical accuracy. However, for large structural dynamics 
problems with rigid-body modes or many low-frequency modes, we 
recommend choosing L as the mass matrix, as a rule of thumb, for 
numerical stability and accuracy. 

The right and left eigenvalue problems associated with z = <j>e ' 
solutions of Eq. (4) are, respectively. 

hBfa=Afa 

XtB
Ti>i=ATiP, 

i = 1,2 In 

i = 1,2 2/i 

where (-)T denotes the transpose of the given vector. It is possible 
that the above normalization equation cannot be applied in some 
circumstances, because it occasionally happens that fa Bfa may 
generate a zero value. However, the probability of encountering 
this condition can be reduced to essentially zero for structural dy- 
namics applications when special properties of admissible matrices 
are taken into account Also, note that with normalization equa- 
tion (6) the normalized eigenvectors are unique within a sign; -fa 
gives the same information as fa. It is apparent that a consistent and 
unique eigenvector can be obtained by considering the sign of any 
one nonzero element of each eigenvector. This property does not 
generate any problem, if any formulation (for example, eigenvector 
sensitivity) utilizing eigenvector information also reflects the sign 
of the corresponding eigenvector, consistently. We will discuss this 
further in the subsequent section. 

Eigenvalue and Eigenvector Derivatives 
The usefulness of eigenvalue and eigenvector derivatives in de- 

sign algorithms for engineering system analysis is well known. 
Some specific applications include identification of dynamic sys- 
tems, redesign of vibratory systems, design of control gains by 
eigenstructure assignment, and sensor/actuator placement optimiza- 
tion. In order to apply gradient-based optimization algorithms, it is 
useful to compute analytical partial derivatives of eigenvalues and 
eigenvectors with respect to the system design parameters. 

The differentiability of the eigenvectors has been addressed in the 
recent literature,"-17 and most of the papers are in the applications- 
driven engineering optimization literature; some aspects of eigen- 
vector differentiation in a general sense have been addressed in 
the linear algebra literature18"22; however, the circumstances un- 
der which eigenvectors are not differentiable does not appear to 
be adequately treated. Therefore, there may be need for collabo- 
ration between engineering community and applied linear algebra   . 
researchers to address the problem of eigenvector differentiation, 
with a special focus upon loss of differentiability (e.g., near the 
repeated eigenvalues and other singular circumstances). Extensive 
numerical experience with, for example, the formulations derived 
by Lim et al.15 indicate that consistently normalized eigenvectors 
using Eqs. (6) are differentiable except in isolated events. We avoid 

. the known degenerate situations here, by ruling out the obvious pos- 
sibilities by enforcing definiteness assumptions on the mass matrix, 
and we do not treat the case of repeated eigenvalues. 

For control design applications, matrix A is typically formed 
from constant system matrices M, C, K and optimization-process- 
variable gain matrices, and by taking matrix M for L, matrix B is a 
constant positive-definite symmetric matrix and the eigenvalues are 
distinct by assumption. For the structural optimization applications, 
matrices A and B consist of varying M, C, and K matrices, which 
are assumed variable as functions of the design parameters such as 
beam thickness, actuator locations, etc. For dealing with these en- 
gineering problems, matrices A and B are assumed to be analytic 
functions of the design parameters, and we made the heunstically 
reasonable assumption, consistent with our experience, that eigen- 
vectors are differentiable, but with special care taken in accounting 
for the normalization conditions in performing the differentiation 
process. Readers may refer to Refs. 18-20 for discussions related 
to the sensitivities of perturbation of eigenvectors for the general 
eigenvalue problem. 

Differentiating Eqs. (5) and using Eqs. (6) (utilizing a modal 
expansion approach) with respect to the design variable p, we can 
obtain the results15 

(5) 

where we adopt the conventional normalization of the biorthogo- 
nality conditions for the eigenvectors as 

faTBfa = \        i = l,2 In (6) 

tfBfa=6,]       i.j = 1,2... .In 

so that 

tfAfa =X;-<5,j i.j- 1.2,. (7) 

OATK 

dp      W'\Sp       'dp)   ' 

sfa 

.2d 

£-?>*' 

(8) 

(9) 

(10) 
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where 

a>>=x^*\jp--hi>p-r> 

b^T^T^\Tp-hTPp 

= j 

(ii) 

,T3BJ. i = j 

Note that the above expressions are valid only for the distinct eigen- 
value case. Except for isolated events such as multiple eigenvalues 
and associated root bifurcations, we assume the eigenvalues and 
eigenvectors to be smooth differentiable functions of the design pa- 
rameter. The case of repeated eigenvalues is considered in another 
recent study.16 

Modal Derivatives for the Second-Order Systems 
The eigenstructure sensitivity formulas introduced in the previous 

section are useful in control design and structure optimization prob- 
lems. Since derivative-based iterative routines are often engaged 
in these applications, it is important to calculate the eigenvector 
derivatives both accurately and efficiently. In this section, by uti- 
lizing well-known properties for linear mechanical second-order 
systems, efficient formulas for computing eigenvector derivatives 
are established. 

The corresponding right and left eigenvalue problems associ- 
ated with exponential solutions (i.e., x = a«") for the mechanical 
second-order system [Eq. (2)] can be written, respectively, as 

(x}M + XiC + K)a; = 0 

(xfM + XiC + Kfß^O 
(12) 

where X,-, a„ and ßt are ith eigenvalues and right and left modal 
vectors, respectively and generally have complex values. The two 
most popular choices for L in Eq. (3) will be considered in this 
study. 

CaseI:L = M 
The eigenvalue problem using the mass matrix for L can be rewrit- 

ten as 

4o *r~[-' -cr (13) 

where <£,- € R2" and iftf € R2" are eigenvectors normalized using 
Eq. (6) and can be partitioned as 

*"{?} tf,= 
(i) 

(2) 
(14) 

By substituting Eq. (14) into Eq. (13) and comparing it with Eq. (12), 
a relationship between the right eigenvectors of the first-order sys- 
tem and the right eigenvectors of the second-order system can be 
obtained as 

4>l X,a, 
(15) 

Also, using Eqs. (13-15) in Eq. (6) yields the normalization equa- 
tions (biorthogonality conditions) 

(l+XJ)ajM<Xi = l 

r.Or 
(16) 

rpy Ma, + Xi^r' Ma,- = «,7 

Considering a positive-definite symmetric M matrix in Eq. (6), 
whenever a complex eigenvalue pair has purely imaginary parts 
with an absolute value of unity Q.c, Xi = ±i), the first equa- 
tion yields zero, and obviously this equation cannot be applied for 
normalization of the corresponding mode's eigenvector. However, 
in control design or structure optimization application, we rarely 
encounter this condition, since during the optimization procedure 
our closed-loop eigenvalues are constrained to lie in thestable region 
due to closed-loop stability constraints, and of course, this singular 
condition is easy to check. One other condition exists where we 
may have a problem with normalizing the eigenvector. Suppose that 
Qi = x + iy, where x and y are real vectors, both not zero; then 
a]Ma-, = 0 if both xTMx = yTMy and xTMy = 0. In response 
to questions raised during the review process, we have studied this 
condition and have been unable to formally rule it out. We believe 
it to be a singular condition rarely encountered but easily tested for. 
Thus, the normalization is not universally valid because the normal- 
ization equation <j>J Bfa = 1 [Eq. (6)] can fail under a few known 
circumstances. From an engineering point of view, it is almost al- 
ways useful (because the singular situations are rarely encountered 
and furthermore may be easily tested for). 

The eigenvalue derivatives for second-order systems can be ob- 
tained by using Eqs. (8) and (13-15): 

(17) 
aP     ^'\aP 

3ß\ , 

,mr/ ,3M     ac   aK\ 
= -^{^+x'lp- + lp-)ai 

ere 

dA 
r               3M -| 

0     IF dB 
raM    „ -i 

dp aK     ac 
.   ap      ap. 

ap ~ dM 

L°   IF 1 
(18) 

Following a modal expansion approach, by substituting Eqs. (13- 
15) into Eqs. (9-11), the eigenvector derivatives forthe second-order 
systems can be represented as 

dp 

where 

=i>^- iF=tw< i = l 2/i 

(19) 

i     ,mT(.,aM   , ac   aK\ 
^ = TpT^\^TF + hTp+lFr 

l *" 

i¥>J 

k=l 

1,        ,x   ,dM .      . 

dp (20) 
i      (2)r/     SM      ac    ax\ 

T,W 

W -^raJ     «* J dp 

-(vf,r + ^2,r)- d~P 
a., -an 

Only complex-conjugate pairs of eigenvalues and eigenvectors oc- 
cur for the case of most interest (underdamped second-order systems 
without rigid-body degrees of freedom), and the derivatives of the 
corresponding complex-conjugate eigenvector pairs are also obvi- 
ously complex-conjugate vector pairs. By making use of this prop- 
erly, the computation time for calculating the eigenvector derivatives 

r)AA forthe complex-conjugate pairs can be immediately reduced by half. 
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CaseII:L=K 
The eigenvalue problem using the stiffness matrix as L can be 

rewritten as 

*-{£}• *"UA1 
(21) 

(22) 

In this case, the normalization equations (biorthogonality condi 
tions) are obtained as 

af(tf + X?M)a,=l 

ßTj(.K-X!XjM)ai=SiJ 

The procedure for deriving eigenvalue and eigenvector derivatives 
for this case is similar to the previous case, and therefore only the 
final results are summarized: 

dp) 

2n 

(24) 

where 

*J     „i7,aaJ" . , aC , a/i:>\ '•#7 

1  *" 
= — £)«»a]f [(JT + Kr) + X,A.t(M + MT)]a, 

k*i 

1   T(dK     ,,3Af\ .      . 

h   „r( ,3M   , ac , a/A . , . 

(25) 

«=J 

Note that the eigenvectors <£,- and V>,- of the first-order systems can 
be simply represented in terms of the eigenvalue and eigenvectors 
A.;, a,-, and /3; of the second-order system, as seen in Eq. (21), in 
the case. Due to this property, the eigenvector sensitivities can be 
represented in a more compact form than the former case (L = M 
case). Comparison of Eqs. (20) and (25), especially expressions 
for by, leads to the conclusion that, if an efficient algorithm for' 
solving eigenvalue problems [Eqs. (22)] for the mechanical second- 
order system is available, then Eq. (25) will be more effective, since 
these equations do not need full information on the left eigenvectors, 
including rpf \ It is also possible to utilize this property in Eq. (14) 
for the L = M case; however, this approach involves a matrix 
inverse, and therefore both the numerical accuracy and efficiency 
will be degraded, especially for large mass matrices. 

III.    Approximation Methods in Computing 
Modal Derivatives 

Approximation Method for First-Order System 
The formulas for eigenvector derivatives derived in the previous 

section requires knowledge of all 2/i eigenvectors. For very large 
structural dynamic systems, it is well-known that only a lowest fre- 
quency subset of Nr modes (eigenvalues and eigenvectors) may be 
computed accurately, where Nr <5C n, and in most practical appli- 
cations, only tens of the lowest frequency modes participate signif- 
icantly in a typical dynamic response of the system. It is natural to 
conjecture that the contributions of very high frequency modes to the 
sensitivity of the lower eigenvectors may also be neglected to some 
degree of approximation. If we consider the problem that deriva- 
tives of only A'r modes are really needed, then a method j^g all 

eigenvectors may lead to inefficiency and a practical difficulty if all 
of the eigenvectors cannot be accurately computed. For this case, 
an approximate method for computing eigenvector derivatives has 
been reported15,17 by utilizing a modal truncation method, including 
only a subset of the system modes: 

—— =au<pj+Zi 
op 

dp 

(26) 

(27) 

where 

"'    tbTF- ^KtbTF; 
^Er^-^+E^ 

N, $0, ^E&r^+I ^4>TjG, 
*J 

;=1 

i'=-i(*r^*'+*r**+?Ä*') (28) 

B„ = -Wir* - ®r** - tfBl> - 5« dp 

(dA        8B\, 

°«    w- \dp   ■ 'dp) 

The overbar denotes an approximate solution, and it is has been 
found that the approximation is often very accurate for large struc- 
tural systems where there exists a large frequency gap between the 
last included mode (TV,.) and the next higher frequency mode. By 
utilizing the biorthogonality conditions, we introduce a modifica- 
tion of the above results, especially in the terms Ff and Gf. Our 
modification follows. 

Eigenvector Derivative Approximation Method 
for Second-Order Systems 

We know from empirical experience that the above approximation 
method is usually efficient for computing lower mode eigenvector 
derivatives. In this section, a more efficient method will be derived 
especially for second-order systems by using results of the previous 
sections. Again, we develop here approximation expressions only 
for the special cases that the mass matrix or the stiffness matrix are 
selected for the L matrix. In the approximation methods, case II 
(using the stiffness matrix for L matrix) is very efficient; thanks to 
the elegantly simple expressions for the left eigenvector as seen in 
Eq. (21), and therefore, this formulation requires much less arith- 
metic, especially for computing the left eigenvector derivatives. 

Case I: L = M 
The exact eigenvector derivatives, Eq. (19), can be rewritten as 

dp <JP 

where 

(30) 

; = • > = i 
i -, 
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The eigenvalues are numbered according to increasing magnitude, 
and we assume that only the lower Nr modes' derivatives are re- 
quired for a suitably accurate approximation. Since we use the lower 
frequency Nr eigenvalues and eigenvectors, the higher mode eigen- 
vectors (higher than the lowest Nr modes) must be approximated. 
Separatingz/ and w, in Eqs. (30) into two parts, the first term includes 
the lower Nr mode eigenvectors that may be computed accurately 
and the second term includes higher mode eigenvectors that will be 
approximated; this yields 

Nr * 
(31) 

y=Wr+i 

Substituting Eqs. (20) into Eq. (30) and using the property for the 
class of problems with a large frequency gap, 

kj - ki = Xj       for 

an approximation z,- can be written as 

Nr   W,«2'7"^. *"       .l-O-f I 

j>Nr 

4>. 

"r^fFi ■EK'.'& 
4>fF,     j^+fF, 

(32) 

+1 
y = l i=l 

where 

/ ,3M     , dC     dK\ 
(33) 

Since ip™ F,- is a scalar, the second summation on the right-hand 
side of Eq. (32) can be simplified. To do this, we consider the spectral 
decomposition of the A matrix using Eqs. (5-7): 

(34) A = *-TA<t> 

or 

where 

_r o    M"1 
-[-K    -Cj- A = diag(A.,) 

(35) 

(36) 

Equation (35) can be rewritten using Eqs. (14) and (15) as 

*    1 

We obtain the following useful relationship from the above equation: 

£* 

E1 
xjaji>f\    L   o   J 

(38) 

Utilizing Eq. (38) in Eq. (32), we obtain the final approximation 
form of ii as 

"'  ■,i,<-2)T F r*—'l "' ib{2)T F 

Now the modal representation of the eigenvector derivative can be 
approximated as 

dp 
= 5;l<l>i+Zl (40) 

where the approximation formula for 5« can be obtained by substi- 
tuting Eqs. (18) and (21) into the formula for 5,,- in Eq. (28), 

*~l|("».,Kv*+C]« 
+ aJ[M   X,M]zf (41) 

For the class of problems that we are dealing with, we have found 
the above approximate solution is very efficient and is usually 
sufficiently accurate to be used in a derivative-based design or opti- 
mization process. It is straightforward but tedious to validate these 
equations using finite differences or by retaining all of the eigen- 
vectors in the corresponding "exact" formulas developed above 
(provided, of course, that it is computationally feasible to solve 
the full-order eigenvalue problem). 

Similarly, the derivatives of the left eigenvectors can be computed 
using the following modal approximation: 

Wi       T    ,        - 
dp 

where 

(42) 

,P> 

(43) 

*=i o hr^+L o J^ir+irr 
[M-TCTK-T-]dKT ,m     A.       ^E 

f      1        IT?(       SM dC      dK\ 

{ 1     tiff       3M      ,   3C      dK\       ,(DTdM\       i 

-a„-[^TM^]z, 

Note that we have made use of the following useful relations for 
deriving the above equations: 

;=1      I 

> M"rC7 'K-T- 

L^J K~T 

E 
><;»c 

yfc 
'1' = 

0 

(44) 

Case II: L = K 
As in the previous section, the eigenvector approximation formula 
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}*' K (45) 

where 

ä, 

-ISM 

ana 

/ ,3M        3C     3-K"\ 

We use the following useful relations for deriving the above 

equations: 

£lwd L ° J 
(46) 

IV.   Numerical Example 
To demonstrate the efficiency and accuracy of the several eigen- 

vector derivative formulas developed in the previous sections, we 
consider a moderately dimensioned second-order system The exact 
[Eqs (8-11)] and approximate [Eqs- (26-28)] methods along wuh 
the new formulations developed for second-order systems are com- 
pared. Eigenvector derivatives in this paper were computed on an 
IBM PC-486DX (33 MHz) using 386 MATLAB®. 

To provide a basis for comparison, we introduce an error measure 
based on the biorthogonality conditions of Eqs. (6). The partial 
derivatives of Eq. (6) forthei = ; case with respect to the parameter 
are as follows: 

>n*o-o.   >*)-o (47) 

Table 1   Configuration parameters of flexible beam 

Parameter Value Units 

Mass density 
Young's modulus 
Beam length 
Moment of inertia 

0.0271875 
0.1584 xlO10 

4.0 
4.7095 x 10-* 

slug/ft 
lb/ft2 

ft 
ft4 

It is obvious that if computed eigenvector derivatives are accurate, 
then as a necessary condition, the above equation must be satisfied. 
Therefore, an error measure can be defined as a norm of the dirrer- 
ences from zero when computed derivatives are substituted into the 
above equations. Although this is only a necessary condition test on 
the validity of the eigenvectors, we have found that it is very useful 
to identify poorly approximated eigenvector derivatives and can be 
routinely computed more efficiently than forming a large table of 
finite difference approximations and comparing them to the corre- 
sponding analytic derivatives. We mention, however, that we have 
done extensive finite difference validations of all of the above eigen- 
vector derivative formulas with typical agreement being four to n.ne 
dibits depending upon the smallncss of the finite difference steps. 

and of course, this agreement between finite derivative^approxi- 
mation and analytical formulas is problem dependent The error 
measure of Eqs. (47) is convenient; it provides an easy-to-compute 
measure without requiring a problem-dependent artistic search for 
"how small" to make a finite difference parameter increment {op). 
Generally, the error values computed from Eqs. (47) are complex 
numbers, and we define an eigenvector derivative error measure by 
simply using the absolute value of Eqs. (47), i.e., 

<*)" 

<*)- 

3<£f      ,        ir
3Bx    ,  JJBW'I 

*.*+<*+««* 

(48) 

We mention the obvious fact that comparing the calculated eigenvec- 
tor derivatives with computed results using finite difference approx- 
imation requires care on two counts. First, since computed results 
using a finite difference approximation are not exact derivatives, 
it usually is necessary to explore the size of the appropriate pa- 
rameter increments, and if the finite difference approximation of 
the derivative is found to be stable to at least four significant fig- 
ures (rule of thumb) over an order-of-magnitude variation in the 
size of the parameter increment, then the derivatives are usually 
found to be sufficiently accurate for derivative-based optimization 
processes. However, a patient pursuit of digits in the finite differ- 
ence tuning can usually result in much higher precision agreement 
with the analytical partials. Avoiding this finite difference artwork 
is of course a primary motivation to have analytical partial deriva- 
tives and analytical necessary condition tests such as Eq. (48) to 
test for arithmetic errors. Second, and most importantly, the nor- 
malization conditions (in the biorthogonality conditions) that were 
enforced in deriving the eigenvector derivative formulas must be 
enforced on the nominal and perturbed eigenvectors used in the fi- 
nite difference computations. We have concluded that the above 
error norm represents an attractive necessary condition measure tor 
checking computed eigenvector derivatives and is in many ways 
more attractive than comparisons to results using the finite difference 
method. Therefore, in this study, the error measure introduced m 
Eq. (48) will be used for checking accuracy of computed eigenvector 
sensitivities. . 

Consider a transverse vibration of a uniform cantilever beam. A 
finite element method"-24 is adopted for modeling, and structural 
damping (assumed damping ratio of 0.001) is included. The geo- 
metric and material parameters of the beam are listed in Tab el. 
To demonstrate the effectiveness of the new methods for at least 
moderately high dimensioned problems, 20 elements are consid- 
ered, and therefore, using the usual cubic spline beam elements (he 
system configuration coordinates are the deflection and slope at me 
right end of each element), the dimension of the mass, damping, 
and stiffness matrices is 40 x 40. In order to evaluate the eigen- 
value/eigenvector derivatives, all elements of the mass dampin?, 
and stiffness matrices are perturbed about 0.1% arbitrarily for this 
special example, and the errors of the eigenvector sensitivities flue 
to the perturbation are given below. Note that eigenvector deriva- 
tives are calculated for the normalized eigenvectors, and tor tms 
special example the norm of the eigenvector is of order 1 for all 
modes and the norms of the eigenvector's derivatives are of order 
for the low-frequency modes and of order 2 for the high-frequency 
modes Therefore, it is evident that a computed result accurate to 
better than seven digits in the worst case was obtained using the 
three alternative formulas developed above for exact eigenvector 

derivatives. 
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Table 2   Errors of right eigenvector derivatives Table 4   Errors of right eigenvector derivatives: 
approjdmai tlon methods 

Mode Method I* Method IF Second-order method 

Mode First-order method Method T Method nb 

1 0.1655 x 10-u 5 6456X10"9 Z6324xl0"* 
2 0.0083 x 10"u 01870 xIO"9 0.4660 x 10"* 1 0.0831 x IO-14 53276 xlO"9 1.3592 xlO"n 

3 0.0003 x 10~u 1.2028 x IO"9 0.1214 x IO"6 2 0.0018 x 10"M 0.4207 x 10~9 0.0122x10-" 

4 0.0001 x io-,3 0.4148 x IO-9 0.0227 x 10~* 3 0.0017 x IO-14 0.6170 x IO"9 0.0022 x 10"" 

40 0.4805 x IO"18 1.9319 x IO"8 3.6814 x IO-" 4 0.0011 x IO"14 0.1600 x 10~9 0.0010x10"" 
5 0.0002 x IO"14 0.0402 x IO"9 0.0004 x 10"" 

Times, s 879.68 310.27 301.04 
Percent 100 35.27 34.22 Time, s 

Percent 
14.61 

100 
2.69 

18.41 
2.80 

19.16 . 
•Use L — M. °Use L — K. 

»Uset = U.      bUse L = K. 

Table 3   Errors of left eigenvector derivatives 

First-order method 

Second-order method 
laoie a   errors or leu eigenvector aenvauves: 

approximation methods 
Mode Method I* Method IF 

Mode First-order method 

Second-or 
1.4541 x IO"9 13319 x 10"9 1.3845 x IO"9 1 Method P Method Hb 

2 0.0946 x IO"9 0.1707 x IO"9 0.0018 x IO"9 

3 0.1575 x IO"9 0.2062 x IO"9 0.0023 x IO"9 1 0.0007 x IO"14 1.2653 x IO"9 3.0959 x 10"13 

4 0.1076 x 10~9 0.0512xl0-9 0.0165 x IO"9 2 0.0111 xlO"14 0.0585 x IO"9 0.0160 x IO"13 

40 3.5224 x 10"9 3.4451 x IO"9 3.2120 x IO"9 3 0.0014 xlO-14 0.1310 x IO-9 0.0015 x IO"13 

4 0.0004 x IO"14 0.0440 x IO"9 0.0004 x IO"13 

Time, s 1187.11 433.48 393.43 5 0.0002 x IO"14 0.0123 x 10~9 0.0001 x IO"14 

Percent 100 36.52 33.14 
Time, s 
Percent 

27.13 
100 

18.07 
66.61 

8.84 
32.58 »Use L = M. bUse L = K. 

The error of the right and left eigenvector derivatives using the 
exact formulas are summarized in Tables 2 and 3, respectively, and 
the error measures of the first four lower modes and the highest 
(40th) mode are reported. For the first-order method, we use the mass 
matrix M for the L matrix and apply the exact formula Eqs. (8-11) 
with Eqs. (3) and (4). Note that for computing the left eigenvector 
derivatives, we use partial computations (a,-,-) from the calculation 
of right eigenvector derivatives, and therefore the errors (of the right 
eigenvector derivatives) propagate into the computation of the left 
eigenvector derivatives. It is evident that some of the information 
needed on the left eigenvector derivative is already known from the 
right, and this valuable information can be utilized for computing 
left eigenvector sensitivities. However, left eigenvector sensitivities 
cannot be computed without former computations of a,-,-. Therefore 
computing time for left eigenvector sensitivities includes calculating 
all a-,j coefficients [for computing ar„ we need aij(i ^ j)], and 
naturally more computing time is needed for computing the left 
eigenvector derivatives. 

There are several formulas for computing the eigenvector sensi- 
tivities discussed in this paper. We will refer the exact and approx- 
imate methods to the existing exact and approximate formulas for 
computing eigenvector sensitivities, respectively. For the presented 
methods for the second-order systems, whether the exact formula 
or the approximate formula is used, method I refers to the case that 
mass matrix M is used for matrix L, and method II refers to the case 
that stiffness matrix M is used for matrix L. As shown inTable 2, the 
accuracy of method I is lower than that of the first-order method, but 
both are acceptable. The errors of right eigenvector sensitivities us- 
ing method II are not uniform and are a little larger than for method I. 
The computation time for the second-order method is three times 
less than the computation time required for the exact formula for the 
first-order system (Tables 2 and 3). In this study, in order to com- 
pute eigenvalues and eigenvectors for this second-order system, we 
use an eigenproblem solver for the first-order system, and the B ma- 
trix in Eq. (4) is moderately ill-conditioned [the condition number 
is O(107)]. For method II, the poor conditioning of the B matrix 
results from the fact that not only the dimension of B matrix is large 
(i.e., 80), but also the order of magnitude of mass matrix elements 
is significantly different from that of stiffness matrix elements. For 
this system, the computed eigenvectors also include errors; this is 
evident by nonzero residuals if one substitutes the computed eigen- 
vectors into the biorthogonality conditions. Especially for large 
systems, errors may be propagated from incorrect eigenvector com- 
putations into the analytically derived formulas for the eigenvector 

"Use L = M.       bUse L = K. 

derivatives. Thus the validity of the derivative approximation rests 
not only upon, for example, including all of the important modes in 
a modal truncation, but also upon the manner in which arithmetic 
errors in the original eigensolution propagate through the particu- 
lar derivative equation calculations. From these observations, and 
other empirical experience, we recommend that method II should 
be used only for relatively low dimensioned systems, and method I 
is recommended for high-dimensioned applications. 

For the eigenvector derivative approximation methods, only the 
first five (lowest frequency) modes (Nr = 10) are computed. 
Tables 4 and 5 summarize tie results using our (improved) approx- 
imation methods. The errors of methods I and II are larger than 
those for (improved) approximation method for the first-order sys- 
tem but are judged acceptable for most applications. As shown in 
Tables 4 and 5, when we use approximation method I, the compu- 
tation time for computing the right eigenvector derivatives is five 
times faster than the approximation method for the first-order sys- 
tem, and for computing the left eigenvector derivatives, it is approx- 
imately twice as fast. Approximation method II is found to be much 
faster than method I, and the computation errors are also smaller. 
Another interesting phenomenon is that the results using the ap- 
proximation methods (Tables 4 and 5) for the lower modes tum 
out to be more accurate than those of the exact (in theory) meth- 
ods (Tables 2 and 3). We may explain this phenomenon by noting 
that numerically inexact computed eigenvectors associated with the 
higher frequencies are included in evaluating the exact formulas, 
but not in the approximate solution, and another contributing factor 
is that the approximate method is much less intense computation- 
ally, and therefore the approximate formulas are less susceptible 
to the accumulation of arithmetic errors. These results provide a 
basis for optimism as regards the practical utility of the new ap- 
proximate eigenvector derivative formulas presented herein, but as 
with any modal truncation method, the issue of which modes to 
retain is problem dependent and generally impossible to resolve 
universally. 

V.    Conclusions 
This paper derives some new exact and approximate formulas 

for computing eigenvector derivatives for second-order mechanical 
systems. In order to demonstrate the effectiveness and accuracies 
of the new formulas, a numerical study using a moderately high 
dimensioned flexible staiclurc is presented. The usefulness of the 
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new methods has been verified by comparing computation time to 
the corresponding computation time for the exact formulas for the 
first-order system, and the accuracy of the new methods has also 
been found to be excellent in the current example. These formu- 
lations are suitable for incorporation into iterative computer-aided 
design optimization algorithms and should find wide application. 
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Abstract 

This modest note presents the necessary condi- 
tions related to the optimal control of natural sec- 
ond order systems. The development includes sys- 
tems subject to holonomic constraints. For natu- 
ral systems, the second order form of the governing 
differential equations are augemented to the perfor- 
mance index, and as a consequence, the resulting 
adjoint system denning the necessary conditions of 
optimality is also second order in form. For natural 
systems subject to holonomic constraints, the sec- 
ond order differential equations of motion and the 
algebraic equations of constraint are augemented to 
the performance index. Following the usual meth- 
ods, we find that, like the original dynamical system, 
the resulting adjoint system is also holonomically 
constrained. We propose an augmented-Lagrangian 
method to numerically solve the coupled set of 
differential-algebraic equations within the solution 
of the two-point boundary value problem. 

Introduction 

A significant class of problems in analytical me- 
chanics fall under the heading of natural systems.1'2 

These include robotic and satellite systems wherein 
the joint angles between substructures may undergo 
large rotations. Many times, the governing differen- 
tial equations of these systems are subject to holo- 
nomic constraints. That is, the equations of mo- 
tion are formulated such that the generalized co- 
ordinates are not independent, but rather they are 
related thru algebraic equations. 

Traditionally, vis-a-vis optimal control formula- 
tions, natural systems are treated no differently: the 
equations of motion are cast into first order form, 

'Graduate Student, Department of Aerospace Engineering, 

Student Member AIAA. 

'George   J.   Eppright   Chair   Professor,   Department   of 

Aerospace Engineering, Fellow AIAA. 

Copyright ©1995 by the American Institute of Aeronautics and 
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and following the usual variational calculus tech- 
niques, one arrives at the adjoint system of first or- 
der differential equations which must be satisfied to 
meet the necessary conditions of optimality. 

When the dynamical system is subject to holo- 
nomic constraints, the optimal control formulation 
often begins with manipulating the governing equa- 
tions by one of three methods before the usual pro- 
cedures for arriving at the necessary conditions for 
optimal control are applied. In the first method, the 
holonomic constraints are used to eliminate redun- 
dant coordinates algebraically and the equations of 
motion are formulated using a minimal coordinate 
description of the system. Because these formula- 
tions rely upon a minimal set of coordinates, the 
resulting system is no longer explicitly constrained. 
In a second method, locally equivalent to the first, 
the generalized coordinates undergo a judicious non- 
linear coordinate transformation. In these new co- 
ordinates, the constraints are trivially satisfied leav- 
ing a subset of differential equations which are not 
subjected to constraint forces. A third approach 
begins by differentiating the holonomic constraint 
equations; the result is arranged as a linear opera- 
tion on the generalized coordinate acceleration vec- 
tor. This allows the elimination of the Lagrange 
multipliers appearing in the differential equations of 
motion in favor of nonlinear functions of the gener- 
alized coordinates, velocities and controls. This ap- 
proach is known as either a range space or null space 
formulation depending on the particular method of 
elimination used. 

All three of the above methods result in a "con- 
straint free" form of the system differential equa- 
tions of motion wherein the generalized coordinates 
maybe considered independent. As mentioned, sub- 
sequent to these manipulations, the usual proce- 
dures for deriving expressions for the optimal con- 
trol may be applied. For all but trivial examples, 
however, these methods lead to almost intractable 
governing equations. 

Below, we formulate the optimal control prob- 
lem for natural systems in second order form. As 
a consequence, because the resulting coupled differ- 
ential equations are in second order form, in solving 
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them we may use one of the many implicit integra- 
tion schemes available.6'7 These schemes were espe- 
cially designed for mechanical systems. For systems 
subject to holonomic constraints, we pursue a differ- 
ent avenue towards the optimal control than those 
methods outlined above. Our approach is driven by 
the desire to avoid nonlinear transformations of the 
generalized coordinates or the elimination of the La- 
grange multipliers from the differential equations of 
motion. 

Governing Equations 

Natural systems are identified as those for which 
the kinetic energy is expressed as a quadratic func- 
tion of the generalized velocities. Specifically, 

T= \mij{q) 4i 4j- 

Here, my is the symmetric, positive definite mass 
matrix and is seen to be a function of the generalized 
coordinates g—we adopt the convention that repeti- 
tion of an index in a term will denote a summation 
with respect to that index over its range. Using 
Lagrangian mechanics to develop the equations of 
motion begins with forming the system Lagrangian 
as the difference between the kinetic and potential 
energies, 

C{q,q)=T(q,q)-V(q), 

where the potential energy V is generally a nonlin- 
ear function of the generalized coordinates. Upon 
identifying any generalized forces which do noncon- 
servative work, the form of Lagrange's equations be- 
come 

dt\dqk)       8qk       V* 

The Qk are nonconservative generalized forces act- 
ing on the system and they are often generated by 
a linear operation on a vector of control inputs via 
Qk = Bum Um. The matrix Bkm is often called the 
control influence matrix. 

Performing the implied differentiation above, the 
differential equations of motion are 

dV 
mkj(?) 9*J + n*»J(?) 9« 9j + Q-■ = Bkm «m,       (2) 

where the third order tensor Tikij is commonly 
referred to as the Christoffel operator of the first 
kind and is defined as 

TT     d«f 1 (drriki      dmkj      dmy 
ilkij -  2 (  dqj   +    dqt dqk 

h 

It is convenient to denote rhij(q) as elements of 
the inverse of the mass matrix (i.e. fhik mkj = 
5ij), which allows us to write the governing set of 
equations as 

9i + M9.9) + ffi(9) = hm{q) Um, (3) 

where 
hi{q,q) = mik{q)Rkij[q)qiqj, 

gi[q)A= rhikisfi-Q—,     and 

bim{q) = rhik[q)Bkm. 

As mentioned earlier, in many system represen- 
tations the generalized coordinates q are not inde- 
pendent, but rather they are related thru a set of 
nonlinear holonomic constraint equations given by 

<Po{q) = 0. 

Now, because the coordinates are not independent, 
one must account for the constraint forces which 
restrict the time/space evolution of the system. 
This is done by representing the constraint forces 

by A 
"3     "01 oqk 

where X0 are elements of a time varying vector 
of Lagrange multipliers which, when determined 
correctly, enforce the holonomic constraints of the 
system. Physically, the normal component of the 
constraint force is proportional to the gradient of 
the constraint function. These constraint forces are 
added to the right-hand side of eq.(l), and so, in the 
present context the constrained dynamical system is 
described by the set of equations 

d (8C\ 
■5— = Qk + -3— Ao aqk dqk 

subject to    ^0(9) = 0, 

or, performing the implied differentiation, 

(4) 

(5) 

qi + hi{q,q) + gi{q) = 
bim{q)um+di0{q)Xo (6) 

where 

subject to    ^0(9) = 0) 

dipo 

(7) 

dio[q) = fhik{q) 
dqk 

We emphasize that this set of differential-algebraic 
equations given by eqs.(4) and (5) must be solved 
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simultaneously for the unknown vectors q(t) and 
A(f). 

We next pose the optimal control statement for 
the natural systems described above. 

Necessary Conditions for Optimal Control 

The necessary conditions for optimal control are 
almost universally derived with the equations of mo- 
tion in first order form. Below, we use the tech- 
niques of variational calculus to obtain the necessary 
conditions for the natural second order systems in- 
troduced in the previous section. We begin with the 
system governed by eq.(3) and then focus on the 
holonomically constrained system given by eqs.(6) 
and (7). 

The problem statement is the minimization of a 
given performance index subject to the dynamical 
equation constraints. We consider a performance in- 
dex which contains terms that are quadratic in the 
generalized positions, generalized velocities, con- 
trols and control rates: including the control rate 
term allows one to specify the value of control at 
the beginning and end of the manuever. Appending 
the dynamical equations to the performance index 
results in 

Jta 
+ \Rim ui um + \Plm iii Um + Vi{ -q\ 

~ hi{q, q) - gi(q) + bim{q) Um) ] dt, 

where Vj is a time-varying vector of Lagrange mul- 
tipliers, while QP

jt QJj, Rim and P,m represent el- 
ements of the weight matrices which are denned in 
the usual way. Limiting ourselves to smooth, un- 
bounded controls while taking the first variation 
yields 

SJ=[Qv
ijqi+Vj-vi^:)Sqj - Vi Sq\ 

+ Plm UlSuJ     + [ ( Q? • q> - Qvij qi 
lo      Jt, 

d,    dhi x dhi dgi 
-"^dt^dq-^^^-^dq- 

+ Vi^-Um)Sqj + {-PlmÜi + RlmUi 
dqj 

+ vi bim ) Sum + {—qi - hi{q, q) - gi{q) 

+ bim{q) ^ )SVi]dt = 0, (8) 

where we have performed an integration by parts to 
eliminate Sqj, Sqi, and Sum from the integrand. In- 
vestigating eq.(8), we first comment that the second 

order state equations must be satisfied. Next, be- 
cause the variations of qj are independent and arbi- 
trary throughout the integration interval while their 
respective multipliers are continuous, these multi- 
pliers must be indentically zero.8 Similar reasoning 
applies in regarding the variations of Um- These ar- 
guments provide us with the second order costate 
(or adjoint) differential equations, and a differential 
optimality condition. 

Original system: 

?» + hi {q, q) + gi (?) = bu (g) uj. 

Adjoint system: 

d      dhi i dhi  ,  dgi 
V^dt{Vid4;) + Viidq-+-dq- 

(9) 

db. 
■um) = Qp

ijqi-Qv
ijqi. 

dqj 

Optimality condition: 

Plm ÜI + Rim Ui = Vi bim 

(10) 

(11) 

All that is remaining is the satisfaction of the 
boundary terms (transversality conditions) which 
require 

and    Pim ui SuT 

= 0;        Vi Sqi = 0 

= 0. (12a-c) 

In considering natural systems subject to holo- 
nomic constraints, we closely follow the develop- 
ments above. We begin by appending eqs.(6) and 
(7) to the performance index which results in 

J= J'WQ^qiqi + hQliitlj 
Jto 

+ \Rlm UlUm + \Plm Ül Um 

+ Vi {-qt - hi{q, q) - gt{q) + bim{q) "m 

+ dio{q)\0)+'r0'Po{q)]dt. 

Here Vi and f0 are time-varying vectors of Lagrange 
multipliers. Taking the first variation of this equa- 
tion while performing an integration by parts to 
eliminate Sqj, Sqi, and 6um from the integrand leads 
to 

0 = [QVijqi + ij-Vi-^-]Sqj 

+ Plm ÜI SUr 

- Vi Sqi 
to 
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+ f'wiju-Qljiii-vj 
d .    dhi. dh% dgi 

dt      dqj dqj dqj 

dbim ddio dtp,, . 
+ Vi —— Um + Vi —— A<, + 7„ — ) dqj 

dqj dqj dqj 

+ V{ di0(q) SX0 ] dt 

rh 
+       [ (Pim ÜJ + Rim «J + Vi 6<m) 6um dt. 

Note that in the above statement we have al- 
ready imposed the requirement that the differential- 
algebraic equations which govern the original dy- 
namical system must be satisfied throughout the in- 
tegration interval. Now, arguments similar to those 
mentioned in the previous discussion lead us to a 
set of second order costate (adjoint) differential- 
algebraic equations and a differential optimality 
condition. 

Original system: 

qi + hi(q,q) + 9i{q) = 

bim{q) Um + di0(q) X0 

subject to    ifo(q) = 0. 

Adjoint system: 

d .    dh{ v ,      / dhi  .  dgi 
V'-dt{Vid4j) + Vi{dq-+dq- 

dbim ddio ,   N 
um - —— A0 ) 

(13a) 

(13b) 

dqj dqj 

subject to    Vi di0(q) = 0. 

Optimality condition: 

Pirn ÜI + Rim. V-l = Vi birn 

(14a) 

(14b) 

(15) 

The corresponding boundary terms are identical 
to those given earlier except that now, like the 
differential equations, these boundary conditions 
must be satisfied subject to eqs.(13b) and (14b). 

Numerical Solution of the TPBVP 

The set of equations defining the necessary con- 
ditions for optimal control represent a two-point 
boundary value problem. In most nonlinear prob- 
lems of practical interest, this system of equations 

must be solved numerically. While there are many 
different numerical methods which may be applied9 

(the method of particular solutions, polynomial ap- 
proximation methods, quasi-linearization methods, 
etc.), we use the shooting method in the examples 
that follow. But rather than focus on the numeri- 
cal technique used to attack the two-point bound- 
ary value problem, we look to the necessary condi- 
tions in their second order form to see if any advan- 
tages are offered within the solution of the two-point 
boundary value problem. 

Beginning with a natural system whose motion 
is governed by eq.(3), we recall that the necessary 
conditions for optimal control are given by eqs.(9) 
thru (11) and the boundary conditions eq.(12). One 
possible advantage to the second order develop- 
ment may be that because the differential equations 
are in second order form, one may take advantage 
of some particular implicit integration schemes. ' 
These schemes were especially designed with natu- 
ral systems in mind. 

Concerning a natural system subject to holo- 
nomic constraints, we recall that the necessary con- 
ditions for optimal control are given by eqs.(13) 
thru (15) and the boundary conditions—recall that 
the equations came about by electing not to per- 
form a nonlinear transformation of the generalized 
coordinates or eliminate the Lagrange multipliers 
which enforce the constraint forces. These equa- 
tions are indentified as differential-algebraic equa- 
tions and their solution requires careful attention. 
While numerical solutions strategies for differential- 
algebraic equations have been the focus of research 
for some years, a penalty solution method has re- 
cently shown considerable promise. 

Historically, the primary use of augmented La- 
grangian methods has been in obtaining solutions 
to time independent problems that are subject 
to constraints.10 Recently however, these meth- 
ods have been extended to address the differential- 
algebraic equations which arise in multi-body dy- 
namic formulations.11'12 Moreover, analysis for very 
general nonlinear dynamical systems has been con- 
ducted which not only proves convergence, but es- 
tablishes bounds on the rate of convergence of the 
method.13 

The general strategy of augmented Lagrangian 
methods is iterative and involves approximating the 
constraint forces and the Lagrange multipliers which 
enforce them. The approximate multipliers are up- 
dated based upon a measure of constraint violation. 
When applied to constrained dynamical systems, 
the solution process can be viewed as quasi-static 
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in nature. Specifically, an iteration process is trig- 
gered at each time step wherein the postions and 
velocities are treated as constant while the acceler- 
ations are considered a static quantity. As applied 
to our coupled state/adjoint differential-algebraic 
equations our strategy involves investigating the dy- 
namics of the state and adjoint systems separately: 
the key lies in looking at the dynamics of the orig- 
inal system first. The iteration process is outlined 
below and closely parallels that given in Ref. (13). 

Before we continue, we remark that with suit- 
able defintions, we may express the state/adjoint 
differential-algebraic equation as 

qi = m (9.5.u) + ^» A° 
subject to    <p0(q) = 0, 

,,     dtfo 
Vi = Pi (9,«1 v,v,u, A) + ■Q^'TO 

subject to   VJ dj0[q) = 0. 

Now then, the iterative scheme triggered at each 
time step is based upon the following approximation 
to the original system: 

q? = Vi(<l>4>v) + di°X" 

--dioi-^9: +Ä;)9J e      ' aqj   •       dt   dqj 

+ 2Cwtp0 + w2<p0], 

K+1 = K 

-l[-dq-qt+dt(dqj
)qi 

with    A° = 0. 

(16) 

(17) 

approximate accelerations and Lagrange multipliers 
approach the true values in the limit. The proof 
relies on the fact that the mass matrix is positive 
definite, e > 0, and by requiring that the constraint 
jacobian maintain full rank. 

Now then, having converged to the true acceler- 
ations and Lagrange multipliers of the original sys- 
tem, we next introduce an approximation to the ad- 
joint system as was done for the original system. 

d(p0    n i\n = Pi(g>9>tf,v,A) + —7„ 

In the above, 5? and A? represent current approxi- 
mations to the true accelerations and Lagrange mul- 
tipliers respectively, while the bracketed term rep- 
resents a measure of constraint violation.  Further, 
n is the iteration number, c> 0 is a small penalty 
factor, and <, w > 0 represent a damping factor and 
frequency associated with the constraint violation. 

The iterative procedure at time t begins by solv- 
ing eq.(16) for the approximate acceleration 3/1. 
This is then substituted into eq.(17) where an up- 
date to the approximate Lagrange multipliers A£ 
is obtained.    This is then substituted back into 
eq.(16) and the iterative process continues until con- 
vergence is recognized. For the sake of brevity, we 
only mention here that, convergence of the method 
may be shown (q? - qj and A? -> A0). That is, the 

1  d<Po r J    rn 
-IJqJ^ 
+ 2Cw^o + w2V'o]. (18) 

n+l n 
(o 10 

--£{djov? 

+ 2CWTJ>O+U
2
4>O], 

with   72 = °- 

(19) 

Here, v? and -y£ represent current approximations 
to the true accelerations and Lagrange multipliers of 
the adjoint system, respectively, while the bracketed 
term represents a measure of constraint violation. 
Again, n is the iteration number, e > 0 is a small 
penalty factor, and <,w > 0 represent a damping 
factor and frequency associated with the constraint 

violation. 
The iterative procedure at time t is performed 

on eqs.(18) and (19) just like it was for the origi- 
nal system. This iterative scheme is also convergent 
{v? -» VJ and 7? — 7o): tbat is the approximate 
adjoint accelerations and associated Lagrange mul- 
tipliers approach their true values in the limit. 

Thus, careful application of the augmented La- 
grangian method to the numerical solution of the 
coupled differential-algebraic equations, which de- 
fine the necessary conditions to optimal control, is 
seen to be a suitable and attractive solution process. 

Illustrative Examples 

We now focus on illustrative examples. The pre- 
vious section outlined numerical techniques which 
may be employed within the solution process of 
a chosen numerical method to solving the two- 
point boundary value problem. For all the exam- 
ples below, we use a shooting method of solution. 
The results are obtained through using the codes 
DNEQNF available in the IMSL14 library. 
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The first example is a two-link rigid manipulator 
shown in Fig. 1. The system properties are listed 
in Table 1. In the simulation, we slew both links 
through angles of 90° in a prescribed time. We 
enforce that the controls begin and end at zero. 
Results are shown Figs, l(a-c). 

The second example, shown in Figure 2 repre- 
sents a free floating satellite.  Table 2 contains the 
system properties. A similar system was presented 
in Ref. 15. The system begins in a folded up fash- 
ion and the optimal control is found to rotate the 
main body through 90° while extending the arms 
in the outreached postion of 90° in a prescribed fi- 
nal time.  In Ref.   15, the relative angles between 
the bodies are chosen as the generalized coordinates. 
This description results in the main body angle a 
being an ignorable coordinate (a statement of the 
conservation of angular momentum for the system). 
The equations of motion are put into a normal form 
via a feedback transformation, and pseudo control 
functions are sought rather than the acuator con- 
trol torques.   Here, we select the absolute angles, 
(as measured from a reference) as the generalized 
coordinates.  In this description, a is no longer an 
ignorable coordinate. We do use a simple stabiliza- 
tion procedure16 to acurately enforce the rigorous 
integral of motion (angular momentum) while nu- 
merically integrating the system equations. Results 
are shown in Figs. 2(a-d). 

The last example represents a holonomically con- 
strained system. A two-link rigid manipulator sys- 
tem is constrained to remain in contact with a sur- 
face (cf. Fig. 3). The constraint function for this 
example is 

ipzzlx cos Öi + h cos 02 - L = °- 

The system properties are listed in Table 3. The 
end effector is moved a distance along the surface 
in a prescribed time. The augmented Lagrangian 
method presented earlier is used to enforce the 
constraint and the results are shown in Figs. 3(a-d). 

Conclusions 

We have investigated the necessary conditions re- 
lated to the optimal control of natural second order 
systems. These systems represent a significant class 
of problems in analytical mechanics; most notably, 
robotic and satellite systems wherein the joint an- 
gles between substructures may undergo large rota- 
tions. We have presented a new approach to op- 
timal control of natural systems subject to holo- 
nomic constraints. In this approach, the differential- 
algebraic equations are augmented to a performance 

index and variational calculus techniques are used 
to obtain the necessary conditions. Like the origi- 
nal dynamical system, the resulting adjoint system 
is also constrained. A careful application of an aug- 
mented Lagrangian method is proposed to enforce 
the constraints relationships of the original and ad- 
joint systems during the numerical solution of the 
two-point boundary value problem. Also, the dif- 
ferential equations, as presented, are readily suit- 
able to numerical integration by implicit integration 
schemes recently developed. 
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Table 3. System parameters 

Link No. 

length, m 
mass, kg 
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Abstract—We present some elegant concepts from stability theory, and consider 
their applicability to the problem of designing control laws for many degree of 
freedom nonlinear dynamical systems. While the spirit of our presentation is 
classical, we include some novel stability results and methodology for designing 
globally stable control laws for nonlinear dynamical systems. The Lyapunov 
approach is attractive because it provides the most broadly applicable approach 
to stability analysis and guaranteed stable controller design for nonlinear, time 
varying, and distributed parameter systems. Especially significant is the fact that 
the Lyapunov approach leads to a unified stability and control perspective for both 
linear and nonlinear systems, as well as systems described by ordinary, partial, and 
hybrid differential equations. The first half of this chapter is an efficient summary 
of the main features of Lyapunov stability theory; however, a few examples are 
considered to help illustrate this material. The second half of the chapter is 
addressed to studies wherein we formulate stabilizing feedback control laws for 
multibody distributed parameter systems undergoing large, generally nonlinear 
motions. Analytical, numerical, and experimental results are discussed. 
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Sec. 3.1.   Basic Definitions  —  

3.1    BASIC DEFINITIONS 
Consider a continuous, finite-dimensional dynamical system which can be described 
by a first-order nonlinear vector differential equation of the form 

x = f(x,t), x€Rn (3-1) 

where x(t) is the state vector at time t, and the dot denotes time differentiation. 

Definition 3.1: Equilibrium State 
A vector xe € Rn is said to be an equilibrium state of the system described by 

Eq. (3.1) at time to if ^^ ^^ M 

If xe is an equilibrium state of Eq. (3.1) at time t0l then x« is also an «!^™m 
sta^ of Eq. (3.1) at all times t, > to- In other words, a motion mitiatmg exactly 
at xe at some time, remains there for all time. 

Definition 3.2: Stability of an Equilibrium State 

The equilibriumstate xe, or the equilibrium solution x(t) = xe, is said to be stable 
if for any given t0 and positive e, there exists a positive S(c, to) such hat every time 
varying trajectory (or solution) x(t) initiating (time t0) at a point x0 ^fh* 
witWn in a^neighborhood of Xe {||x0 - Xell < 6, x0 = x(t0)} remains for all 
time within an .-neighborhood of x« {||x(t) -xe]| < e V t > to}. The equilibrium 
state is said to be unstable if it is not stable. 

Definition 3.3: Asymptotic Stability of an Equilibrium State 

The equilibrium state xe is said to be asymptotically stable, if 

(a) it is stable (Definition 3.2), and if in addition 

(b) for any t0, there exist a 6i(t0), such that 

||x0-Xe||<Si    implies that     Kmx(t)->Xe (3.3) 

If 6 and «i are not functions of to, then the equilibrium state is said to be 
uniformly stable and uniformly asymptotically stable, respectively. Definitions 3.2 
and 3 3 constitute the two basic definitions of stability of an equilibrium state 
(a fixed point in the state space) for an unforced continuous time system. More 
generally, we need to consider the stability of a trajectory or a motion. Qualitatively, 
stability of a trajectory is concerned with whether or not a perturbed motion remains 
near the unperturbed trajectory, or diverges from it.  Stability of a motion is of 
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central interest in many practical feedback control situations whereby a system is 
designed to execute a large nominal motion, and control inputs must be developed 
not only to generate the nominal motion, but also closed loop feedback is required 
to stabilize neighboring motions, with respect to the nominal motion, so that the 
actual system will behave in a near-nominal fashion. 

Definition 3.4: Stability of a Motion 

The motion x(t) is said to be stable if, for all initial times t0 and prescribed positive 
€, there exists a positive 6(e,to), such that 

||x(t)-x(t)||<€      Vt>t0   if   IIXQ - x0|| < Ä 

where x(t) and x(t) are neighboring trajectories with the given initial conditions 
XQ and XQ, respectively, at time t0. 

■ 
This bounded motion stability properly is sometimes.referred to as "path stabil- 

ity." Qualitatively, path stability means that "if the perturbed initial state x(t0) is 
near x(t0), then the ensuing perturbed trajectory x(t) will remain near x(t) for all 
time t." 

Definition 3.5: Asymptotic Stability of a Motion 

The motion x(t) is said to be asymptotically stable if 

(a) it is stable (Definition 3.4), and if in addition 

(b) for any t0, there exist a positive $i(t0), such that 

||xo-x0||<«i    implies that     Urn ||x(t) -x(t)|| = 0 (3.4) 

Note that x(t) is any member of the set of neighboring (perturbed) trajectories 
satisfying Eq. (3.4), and all members of this set asymptotically approach x(t). 

■ 

The above definitions are not directly concerned with the global properties of 
systems, but of the local motion in a finite local neighborhood of an equilibrium 
state or a motion of the system of differenital equations. If a system has a globally 
asymptotically stable equilibrium state, then it is obviously the only equilibrium 
state, and every motion converges to that unique equilibrium. An analogous global 
stability property can be denned for the stability of a motion. 

The simplest class of Lyapunov stability analysis methods arises in the context 
of systems described by linear unforced differential equations. We summarize some 
of the central ideas and results below. 

Consider the linear system 

x(t) = A(t)x(t) 

0*1 



Sec. 3.1.   Basic Definitions   

which obviously has an equilibrium state at the origin. This linear system can be 
classified as stable, asymptotically stable, or unstable, depending on the stability 
of the origin [Vidyasagar 1978], [Willems 1970]. 

Now, we introduce two definitions associated with the concept of positive definite 
functions, these are of central importance when applying Lyapunov stability theory. 

Definition 3.6: Positive Definite Function 

A singled-valued function U(x), which is continuous and has continuous partial 
derivatives with respect to the components of the vector x, is said to be positive 
definite in some region fi about the origin if it vanishes at the origin and is positive 

elsewhere, i.e., 

(i)U(0) = 0 

(ii) U(x) > 0     for all nonzero x € fi 

■ 
If the positivity condition (ii) is relaxed to simply the non-negative condition 
U(x) > 0 for all x € ft, then U(x) is said to be positive semidefinite. If the inequality 
sign in (ii) is reversed, then the condition for a negative definite function is obtained. 
If a function is neither positive nor negative definite, then it is indefinite. 

Definition 3.7: Positive Definite Quadratic Forms 

In the analysis of linear dynamical systems, quadratic functions of the state vector 
arise often in the context of energy, stability and control analyses. Especially 
important are symmetric quadratic forms. The quadratic form U(x) = x Qx said 
to be positive definite if 

U(x) = xTQx > 0       for all nonzero x G Rn 

where Q is a real symmetric matrix. 
■ 

Definition 3.7 is equivalent to requiring that all the eigenvalues of Q are strictly 
positive, such a matrix is naturally called a positive definite matrix. 

Further discussion of these concepts is presented in [Vidyasagar 1978] and 
[Willems 1970]. 

The following example illustrates the ideas underlying the above discussion. 

Example 3.1 

Consider the functions: 

Ux(x) = x? + x^ + xl   and   U2(x) = (xi +x2 + X3)2. 

Clearly Ui satisfies the condition of Definition 3.7, therefore it is a positive definite 
function in a three-dimensional space, but Ui is only positive semidefinite if the 
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underlying space has more than three dimensions. U2 is only positive semidefinite 
in three space, since it is zero everywhere in the plane xi + x2 + X3 = 0. 

■ 

3.2    LYAPUNOV STABILITY THEORY (LYAPUNOV'S DIRECT 
METHOD) 

The central ideas of the Lyapunov stability theorem are now introduced. For a 
given general nonlinear, forced, dissipative mechanical system, it is often useful to 
consider a conservative idealized approximation of system without the dissipative or 
nonconservative external forces acting. For this idealized nonlinear system, suppose 
that there exists one equilibrium state Xe of the system. Also suppose that the total 
mechanical energy or Hamiltonian of this idealized system is a positive definite 
function and is an exact integral of the idealized system. For a broad class of 
practical applications, the total energy or Hamiltonian of an idealized conservative 
system is a suitable Lyapunov function for studying the stability of the system, 
including dissipative internal and external forces; for many applications, it naturally 
occurs, or can be arranged that the equilibrium state is the target state for the 
system. More generally, a candidate Lyapunov function must belong to a class of 
admissible 'energy' functions which have as the most fundamental property that 
they are zero at the equilibrium state and positive everywhere else. 

Now let us assume that the system is initially perturbed to a state neighboring 
the equilibrium point where the energy level is positive by assumption, and we 
consider the time evolution of the distance to the equilibrium as measured by the 
energy function. Depending on the nature of the selected "energy" (Lyapunov 
function), the stability of the motion may be described qualitatively as follows: 

(i) if the system dynamics evolve such that the initial energy of the system is not 
increasing with time for all starting points in a finite neighborhood, we can conclude 
that the equilibrium state is stable, 
(ii) if the system dynamics evolve such that the energy of the system is monoton- 
ically decreasing with time for all initial conditions in the neighborhood (and thus 
eventually approaches zero), the equilibrium state is asymptotically stable, 

(iii) if the energy of the system is increasing with time, for any initial condition in 
the neighborhood, then the equilibrium state is unstable, and 

(iv) if the chosen energy measure is indefinite (i.e., it is neither strictly decreasing 
nor increasing), then no conclusion can be drawn on the stability of the system. 
The following theorem, which is a rigorous statement of the above remarks, is the 
basic stability concept underlying Lyapunov's direct (second) method. 

Theorem 3.1: Stability Theorem 

The equilibrium state xe is stable if there exists a continuously differentiable 
function U(x) such that 

i6<; 
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(i)U(xe) = 0 

(ii)U(x)>0    forallx^xe.xen 

(iii) U(x) < 0     for all x # xe, x G n 

where U(x) denotes the time derivative of the function U(x) and ft is some region 
^ntlingxe. Notice that the «energy rate" U(x) is evaluaed alongatyptcal 
SZxW, and the conditions (Ü) and (iii) must hold along «H tnfimiy of 
VajectoHes of the dynamical system, which ensue from initial states in 0. 

A modest perturbation of Theorem 3.1 (making the final inequality strict) results 
in the following theorem, which provides necessary and sufficient conditions for 

asymptotic stahiliiy. 

Theorem 3.2: Asymptotic Stability Theorem 

The equilibrium state Xe is asymptotically stable if there exists a continuously 
differentiable function U such that 

(i)U(xe) = 0 

(ii) U(x) > 0    for all x # xe, x G fi 

(iii) U(x) < 0    for all x # xe, x € fi 

■ 

Both of the previous theorems relate to local stability in the vicinity of the 
equilibrium state. A system has global asymptotic stability with respect to a unique 
equilibrium point if the following theorem is satisfied. 

Theorem 3.3: Global Asymptotic Stability Theorem 

The equilibrium state Xe is globally asymptotically stable if there exists a continu- 
ously differentiable function U with the following properties: 

(i)U(xe) = 0 

(ii) U(x) > 0 for aU x # xe 

(iii) U(x) < 0 for all x # xe 

(iv) U(x) —- oo as ||x|| — oo 

■ 

Note that the stable region fi extends to infinity in Theorem 3.3. The reader is 
referred to [Vidyasagar 1978] for further discussion, including the complete proofs 

266 



*^4 Stability and Control of Nonlinear Mechanical Systems     Ch. 3 

of the above theorems. Observe that there is no one unique Lyapunov function for 
a given system; some may be better than others. This is especially important when 
we seek the "least conservative" stability information when, for example, we seek 
to determine the size of the fi region in which we have stability. If a poor choice 
of U(x) results in a pessimistic conclusion that the stable region fi is much smaller 
than it actually is, then this is an obvious concern. It also should be noted that if a 
Lyapunov function cannot be found, nothing can be concluded about the stability of 
the system, since the Lyapunov stability theorem provides only sufficient conditions 
for stability. Therefore, the conditions required to prove stability, based upon an 
arbitrary choice of Lyapunov function, may be very conservative. 

Unfortunately, the above classical Lyapunov theorems are not constructive; these 
stability theorems do not reveal a process to find a candidate Lyapunov function. It 
is often difficult to find a suitable Lyapunov function for a given nonlinear system. 
The physical and mathematical insights of the analyst have historically played an 
important role in most successful applications of this approach; however, more 
systematic methods have recently emerged [Oh 1991] , [Junkins 1993, 1991, 1990] 
for certain classes of control design problems. In particular, when the stability 
analysis and the control design analysis are merged, one is often able to exploit the 
additional freedom to simultaneously design control laws and select a Lyapunov 
function which guarantees stability of the closed-loop (controlled) system. 

Example 3.2 

Consider the system described by the nonlinear ordinary differential equation 

x(t)-«2(t)x(t) + x(t) = 0 

The objective is to use Lyapunov analysis to investigate the stability of motion near 
the origin for this system. 

Introducing the state variable representation of this system with the definitions 
Xi = x, X2 = x, we write the equivalent first-order system 

Xi = x2,    x2 = —Xi + «X1X2 

It is easy to see that the above "oscillator with quadratic damping" has an 
equilibrium state at the origin (xi,x2) = (0,0). Our goal is to determine if this 
state is stable. For this purpose, let us choose the simplest candidate Lyapunov 
function is 2U(xi,X2) = xf + x§. We note that a physical motivation for choosing 
this positive definite function as a candidate Lyapunov function is that it is an exact 
(total mechanical energy) integral of the system, for e = 0. Clearly, this candidate 
function satisfies the two most fundamental necessary conditions that U(0,0) = 0 
and U(xi,x2) > 0 in any neighborhood of (0,0), and we find that 

U(xi,x2) = X1X1 + x2x2 = xix2 + x2(-xi + fx?x2) = ex\xl 

Thus J3 is a positive definite function which is strictly decreasing along all system 
trajectories if c < 0. Therefore, by the above theorems, the origin (0,0) is a globally 
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stable equilibrium point for e - 0, is globally asymptotically stable for c < 0, and 
is globally unstable for c> 0. Thus Lyapunov analysis was completely successful in 
establishing the global stability characteristics of this system. 

Example 3.3 

Investigate the stability of the system of nonlinear differential equations 

Xi = Xi(x? + xl - 1) - X2)     X2 = Xi + X2(x* + x\ - 1). 

We try the candidate Lyapunov function 2U(xi,x2) = x\ + x\, which is an exact 
integral of the simplified system xx = -x2, x2 = xx. This choice for U is obviously a 
positive definite function having its global rninimun at the origin. It is also obvious 
by inspection, that the origin is the only equilibrium point of the nonlinear system. 
Investigating the energy rate, we find 

U(xi, x2) = (xf + x|)(xj + xl -1). 

It is evident that Ü is negative definite over the finite circular region 
{(xi,x2)| x\ + x| < 1}, which includes the equilibrium point at the origin. Hence, 
the origin (0,0) is an asymptotically stable equilibrium state of this system. Note 
that all points within the unit circle are asymptotically attracted to the origin. 
However, because Ü is not a negative definite function over all of .R", we cannot 
conclude global asymptotic stability without more information. While we are cer- 
tain we have stability within the unit circle, this conclusion results from a particular 
choice of U(xi,x2), and without further analysis, we cannot conclude that the sta- 
ble region is not actually larger than the unit circle. However, since U is positive 
everywhere outside the unit circle, we conclude, using the following Theorem 3.4, 
that we have instability for all trajectories which initiate outside the unit circle and 
asymptotic stability for all trajectories initiating inside the unit circle. Thus, we 
are able to use the stability and instability insights simultaneously to "establish 
the complete story" vis-a-vis the global stability properties of this system, since 
the stable and unstable regions have a mutual boundary and together the stable and 
unstable regions span all of state space R . 

■ 

The following theorem is sometimes useful in avoiding a fruitless search for 
Lyapunov functions for systems which are inherently unstable in certain regions 
of state space. This theorem is also useful in obtaining theoretical closure of 
the stability analysis, in the sense that it is sometimes possible simultaneously to 
apply the instability theorem with the stability theorems to establish conclusively 
a particular system's global stability properties. In Example 3.3, for example, we 
concluded that our simple choice on U gave us all of the stability information (i.e., 
the system is stable only within the unit circle). 
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Theorem 3.4: Instability Theorem 

The equilibrium state Xe is unstable in fi if there exists a continuously differentiable 
function U such that 

(i) U(xe) = 0  and   U(xe) = 0 

(ii) U(x) > 0    for all x ^ Xe, x € fi 

(iii) and there exists points x arbitrarily'close to Xe such that U(xe) > 0 

■ 

If one can find any function U satisfying the above conditions, then xe is a 
completely unstable equilibrium point in fl, and the quest for Lyapunov functions 
can be halted. In Example 3.3, the fi for the instability theorem is clearly the 
compliment of the ß for the asymptotically stable region, and it is apparent that 
the stable and unstable regions being complimentary, (together spanning all of state 
space) is the key to establishing global stability/instability information. 

3.3    STABILITY OF LINEAR SYSTEMS 

3.3.1    Lyapunov Theorem for Linear Systems 
Lyapunov's method is easily applied to test the stability of a linear system. Consider 
an autonomous system described by the linear vector differential equation 

x(t) = Ax(t) (3.5) 

The above system is said to be stable in the sense of Lyapunov, if the solution of 
Eq. (3.5) tends toward zero (which is obviously the only equilibrium state if A is of 
full rank) as t -+ oo for arbitrary initial condition. 

Consider the case of a constant A matrix. If all eigenvalues of A are distinct, 
the response of system (3.5) due to initial condition XQ can be written as 

x(t)=EtTxo^ <3-6) 

where Aj are the eigenvalues of A, <j>. and ^. are, respectively, the right and left 
eigenvectors of A associated with Aj. For the repeated eigenvalue case, the situation 
is more complicated (i.e., we should solve for the generalized eigenvectors of A). The 
generalization of Eq. (3.6) for the case of generalized eigenvectors has a similar form, 
but is not discussed here [Chen 1984]. From Eq. (3.6), we can see by inspection 
that the system is asymptotically stable if and only if all the eigenvalues of A have 
negative real parts, i.e., 

S[MA)1<0 (3.7) 
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Thus, we have the well known result that the stability of a linear constant- 
coefficient dynamical system can be completely characterized by the signs of the 
real parts of the eigenvalues of the system. This approach to stability analysis yields 
both necessary and sufficient conditions. However, calculating all the eigenvalues of 
the system matrix is not always desirable, especially for high-dimensioned systems. 
As will be evident below, other stability viewpoints lead to important insights 
and generalized methods, especially vis-a-vis stability analysis for time-varying, 
distributed-parameter, and nonlinear systems. 

For the linear dynamical system of Eq. (3.5), we choose a symmetric quadratic 
form as a candidate Lyapunov function 

2U(x) = xTPx (3.8) 

where P is a positive definite, real symmetric matrix. Thus U is positive definite 
with it's global minimun at the origin, which is obviously an equilibrium state. 
Differentiating Eq. (3.8) and substituting Eq. (3.5) into the result gives 

U(x) = xT(ATP + PA)x.  ' (3.9) 

Using the Lyapunov stability Theorem 3.2, we require U(x) to be negative definite. 
We can rewrite the energy rate of Eq. (3.9) as 

U(x) = -xTQx. (3.10) 

So we see that, for asymptotic stability, P and Q must be positive definite matrices 
which satisfy the condition 

ATP + PA = -Q. (3.11) 

Equation (3.11) is commonly known as the algebraic Lyapunov equation. 
To examine the stability of a linear system via the above Lyapunov approach we 

can proceed as follows: "Choose Q to be any positive definite matrix for a given A, 
and check the eigenvalues of the resulting P which we obtain by solving Eq. (3.11), 
if P is positive definite (all positive eigenvalues), the given system is asymptotically 
stable, while if P has any negative eigenvalues, the system is unstable." One of the 
potential difficulties with selecting Q and solving the Lyapunov equation (which, of 
course, depends on the system matrix A) is the uniqueness of the resulting solution 
for P. The following theorem gives the necessary and sufficient conditions for the 
Lyapunov Eq. (3.11) to have a unique solution. 

Theorem 3.5 

If {Ai,...,A„} are the eigenvalues of the system matrix A, then the Lyapunov 
equation [Eq. (3.11)] has a unique solution P if and only if 

Aj + Af^O, i,j = l,...,n 

where (  )H denotes complex conjugate. ■ 
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The reader is referred to [Chen 1984] for a proof of the above theorem. Thus, 
we cannot solve the Lyapunov equation for undamped second-order systems having 
pairs of eigenvalues on the imaginary axis (including rigid body modes, whose 
eigenvalues reside at the origin of the complex plane), and so stability analysis 
for systems having a neutrally stable subspace cannot be completed via solution of 
an algebraic Lyapunov equation. 

Theorem 3.6: Lyapunov Stability Theorem for Linear Systems 

A linear system is asymptotically stable or, equivalently, all the eigenvalues of A 
have negative real parts, if and only if for any given positive definite symmetric 
matrix Q there exists a positive definite (symmetric) matrix P that satisfies the 
Lyapunov equation 

ATP + PA = -Q (3.12) 

■ 
The proof of this theorem is given in [Junkins 1993]. Note that the Lyapunov 

equation is equivalent to a set of n(n + l)/2 linear* equations in n(n + l)/2 
unknowns for an n-ih order system. The Lyapunov equation can be solved by using 
numerical algorithms utilizing QR factorization, Schur decomposition, or spectral 
decomposition; however, our experience indicates that the most efficient and robust 
algorithms utilize the QR factorization [Junkins 1993]. 

Example 3.4 

Consider the system matrix 

■-£!]• 
The simplest choice of Q is the identity matrix or some other diagonal matrix; we 
take Q = I for this example, and let the three distinct elements in P be denoted 

[Pi    P2] 
LP2    PaJ 

Substituting this A and P into the Lyapunov equation [Eq. (3.11)] yields the 
following three linear algebraic equations 

-4pi-2p2    =    -1 
Pi — P2 - P3     =     0 

2p2 + 2p3    =    -1. 

The solution of these three equations is straightforward; we find 

-1/2   3/2 
Pi=-jf        V2=2'        P3 = ~2     ==>    P = 

3/2    -2 
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Even though we have a unique solution, the resulting matrix P is not positive 
definite. Hence, we conclude that the system is unstable, and implicitly, that not 
all of the eigenvalues of A have negative real parts. We would have to calculate the 
eigenvalues to make further assessments of eigenvalue placement. 

■ 

In the case of a linear time-varying system x(t) = A(t)x(t), the sufficient 
conditions for the stability of the equilibrium state can be analyzed based on the 
concept of matrix measure [Vidyasagar 1978], and if the system is asymptotically 
stable, then a quadratic Lyapunov function exists for this system. Of course, 
conventional eigenvalue analysis is not applicable to the time-varying case and, 
therefore, the more general Lyapunov approach provides one possible avenue to 
characterize the stability of nonautonomous systems. 

3.3.2    Linear Dynamic Systems Subject to Arbitrary Disturbances 
To make the Lyapunov stability analysis in this section more complete, we briefly 
discuss stability in the presence of disturbances. We consider the class of systems 
described by the matrix differential equation 

i(t) = Ax(t) + f(t,x(t)) (3.13) 

where the uncertainty and/or perturbations of the system are assumed representable 
by arbitrary nonlinear function f(t,x(t)) (except we require f(f,0) = 0, so that the 
origin of the state space remains an equilibrium state for this class of model errors 
or disturbances). Furthermore, we assume that exact expressions for f (t, x(t)) are 
unknown and only bounds on f (t, x(t)) are known. The central question we address 
here is the following: "Given that A is asymptotically stable, and without using 
specific knowledge of f (t,x(t)), is it possible to obtain a bound on allf (t,x(t)) such 
that the system maintains its stability?" Put another way, can we determine some 
measure of how large f(t,x(t)) can be without destabilizing a given stable linear 
system? Some insights on these issues are embodied in the following theorem: 

Theorem 3.7 [Patel 1980] 

Suppose that the system of Eq. (3.13) is asymptotically stable for f (t, x(t)) = 0, then 
the system remains asymptotically stable for all nonzero perturbations f(t,x(t)) 
which are sufficiently small that they satisfy the following inequality 

Jffl<i2ilÄ„„ <3.,4, 
||x||     max A(P) 

where P and Q satisfies the following Lyapunov equation 

ATP + PA = -2Q 

and where the otherwise arbitrary f (t, x(t)) vanishes at the origin f (t, 0) = 0.      ■ 
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The proof of this theorem is given in [Patel 1980], [Junkins 1993]. Since P is a 
positive definite matrix, the maximum eigenvalue of P is same as the largest singular 
value of P. It has been also shown in [Patel 1980] that when the identity matrix 
is chosen for Q, /XPT in Eq- (3-14) is a maximum and for this choice, p„ can be 
expressed as 

/ipT=maxA(P) = ^(P)' (3'15) 

The above bound is often very conservative, since it is only a sufficient condition 
for the stability of the system, and this stringent bound is not usually necessary. 

An important special case is for the class of perturbations having the linear 
structure 

f(t,x(t)) = Ex(t) (3.16) 

Clearly this corresponds to an additive error in the A matrix (i.e., A —► A + E). 
We can apply Theorem 3.7 to arrive at the desired result; we can establish that the 
system remains stable if E is bounded by the following modified stability margin: 

min[-*{Ai(A)}] 

»E^ EW 
(3-17) 

where £($) is the condition number of <£, and $ is the normalized eigenvector 
(modal) matrix of A. The condition number definition used here is the ratio of the 
largest and least singular values of $, 

0-min($) 

As is evident in the above discussion, the stability margin is closely related to 
the Patel-Toda robustness margin; the "more stable" the nominal system is, the 
larger the bound on the allowable perturbation E becomes. However, the important 
ingredient evident in Eq. (3.17) is the fact that a large condition number £($) 
degrades the effective stability margin. Qualitatively, if the eigensolution is highly 
sensitive (large condition number), then it is easier to introduce destabilizing 
perturbations, and generally, the stability margin (distance of eigenvalues from the 
imaginary axis) should be considered simultaneously with a measure of sensitivity. 
The intimate connection of the Patel-Toda robustness measure (for stability of linear 
dynamical systems in the presence of additive perturbations) to the Bauer-Fike 
Theorem (for conditioning of the algebraic eigenvalue problem [Junkins 1993]) 
is clear. 

Note that the condition number £($) approaches its smallest possible value of 
unity if $ is any unitary matrix (one for which $H$ = I), and the upper bound on 
the condition number is infinity which occurs if $ is any singular matrix. Observe 
that an infinity of unitary matrices exist, some of them are "closer" to * than 
others. When one has the freedom to modify A (and therefore $), a natural question 
arises: for a given class of A-raodifications, how can we make $ as nearly unitary 
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as possible? Of course, one way to modify the A matrix is through design of a 
feedback controller, and one avenue toward designing gains in linear robust control 
laws is to maximize the right-hand side of Eq. (3.17) by minimizing £(*). It is also 
of significance that choice of actuator locations considered simultaneously with the 
design of control gains can often significantly reduce the condition number £(*). 
These ideas provide some of the motivation for the robust cigcnstructure algorithms 
and actuator placement optimization approaches presented in [Junkins 1993]. 

3.4    NONLINEAR AND TIME VARYING 
DYNAMICAL SYSTEMS 

In this section, we present stability analysis methods for nonlinear systems In 
section 3.4.1, we consider a method known as Lyapunov's indirect (or first) method, 
whereby we can determine partial stability information for nonlinear systems by 
examining the behavior of locally linearized systems. In section 3.4.2, we develop an 
important result which provides easy-to-test sufficient conditions to determine if we 
have asymptotic stability in spite of the common situation that the energy function's 
time derivative is only a negative semidefinite function of the state variables. In 
addition to the classical stability analysis for which the Lyapunov methods were 
developed, these ideas can be used to motivate design methods which yield control 
laws for control of large maneuvers for distributed-parameter systems. 

This approach is used throughout the remainder of this chapter. In section 
3.5, we consider a nonlinear multibody idealization of two robots cooperatively 
manipulating a payload. Both open-loop and feedback-control designs are studied, 
and Lyapunov methods are used to ensure path stability of the resulting closed-loop 
dynamics, using a tracking control law. 

3.4-1    Local Stability of Linearized Systems 
Stability analysis of linear motion arises often in practical analysis of nonlinear 
systems when we are concerned with motion near an equilibrium state. The results 
presented in section 3.3.1 enable us to obtain necessary and sufficient conditions 
for the stability of linear systems, but also provide us a method for determining 
the local stability of a nonlinear system by linearization, which is called Lyapunov's 
indirect method. 

Consider the autonomous system 

x(t) = f[x(t)]      with   f(xe) = 0 (3.18) 

Let z(t) be the perturbation (departure motion) from the equilibrium state as 

x(t) = xe + z(t) (3-19) 

Using Taylor's series expansion of f (•) around the equilibrium state xe, we can write 

f[»(t) + xe] = f (xe) + (Hl^M + 0[z(t)]2 <3-20) 
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Using Eq. (3.20) in Eq. (3.18) gives the perturbation equation 

z(t) = Az(t) + 0[z(t)]2 (3.21) 

where A denotes the Jacobian matrix of f evaluated at x = Xe, A = f^| 
lÖXJx=Xe 

and so we find the linear, constant coefficient matrix differential equation 

z(t) = Az(t) (3.22) 

The following theorem is given here (without proof); this is the main stability 
result of Lyapunov's indirect method. 

Theorem 3.8: Lyapunov's Indirect Method 

If the linearized system [Eq. (3.22)] is asymptotically stable, then the original 
nonlinear system [Eq. (3.18)] is also asymptotically stable if the motion initiates 
in a sufficiently small neighborhood containing the equilibrium state. 

■ 

The above theorem is useful since we can analyze the local stability of an 
equilibrium state of a given nonlinear system by examining a linear system. 
However, the conclusions based on linearizations are local, and therefore to study 
global stability, we should rely on Lyapunov's direct method. On the other 
hand, if one can find all equilibrium points and investigate their local stability, 
a fairly complete picture of the overall global stability characteristics can often 
be derived. Note that one key shortcoming (of the indirect approach) is the 
absence of information on the size or boundary of the "domain of attraction" of 
each locally stable equilibrium point; this is precisely the information which a 
completely successful application of the direct approach determines. Finally, we 
note the most important point: if the linear motion is critical (e.g., zero damping, 
some eigenvalues have zero real parts), then the stability of the locally linearized 
analysis should be considered inconclusive and nonlinear effects must be included to 
conclude local stability or instability. 

3.4.2    What to Do When Ü is Negative Semidefinite? 
Several subtle possibilities arise if the function derived for Ü is not negative definite. 
For a significant fraction of the practical occurrences of this condition, including 
several applications considered subsequently in this chapter, we can prove global 
asymptotic stability in spite of the fact that the function derived for Ü is negative 
semidefinite. The main results from the traditional literature for dealing with this 
problem are embodied in a theorem due to [LaSalle 1961]; this theorem sometimes 
allows us to conclude that we have local asymptotic stability for the case that U > 0 
and U < 0, provided we can prove that the equilibrium point is contained in a region 
of state space known as the maximum invariant subspace M. 



123 
Sec. 3.4.   Nonlinear and Time Varying Dynamical Systems   

The maximum invariant subspace is, essentially, the largest domain M containing 
an equilibrium point, for which all trajectories evolve such that U > 0 and U ^ 0 for 
all time along the trajectories, with Ü = 0 being approached only occasionally (at 
most) at isolated apogee-like states that are not equilibrium points (i.e., U is negative 
almost everywhere except its asymptotic approach to zero at the equilibrium state 

which is a minimum of U). .... r      L-L 
It is usually easy to identify the subset Z of points m the state space for which 

Ü = 0 but LaSalle's maximum invariant subspace M is, in general, a subset of 
Z The main challenge of applying LaSalle's theorem then reduces to the quest 
to identify or approximate M; this is difficult when the differential equations are 
complicated nonlinear functions. While these ideas are elegant, we elect not to 
discuss the search for M in detail, but rather we present a recently developed result 
[Mukherjee 1992a, 1992b, 1993], [Junkins 1993] which is often easier to apply. 

Prior to stating the theorem, we introduce some notations: Let x = 0 be an 
equilibrium state of the nonlinear system x = f (t, x), where f is a smooth, twice 
differentiate n-vector function oft and x. Note that the trajectories of the nonlinear 
differential equation x = f(t,x) generates a smooth vector field in the region fi 
which includes x = 0. Let U(t,x) be a scalar analytic function in Q, which is locally 
positive definite. Suppose Ü(t.x) is only negative semidefinite. Let Z denote the 
set of points for which U(t,x) vanishes. We will be concerned with the first k 
derivatives ^, evaluated on the sei Z. We are now prepared to state the theorem: 

Theorem 3.9 

A sufficient condition for asymptotic stability, when U > 0 and Ü < 0 for all x € fi 
is that the first (k-1) derivatives of U vanish on Z, up through some even order (k-1) 

*£ = 0,    V   x€Z,    for   j = l,2,...,    k-1 (3.23) 
dt> 

and the first (the kth) nonzero derivative of U (evaluated on Z) is of odd order and 
is negative definite for all points on Z: 

^•<0,    V   x€Z,    fork odd (3.24) 
dtk 

In the event that all infinity of U derivatives vanish on Z, sufficient conditions for 
stability are that U is positive definite and that x = 0 is the only equilibrium point. 

■ 

The proof of this theorem is given in [Mukherjee 1992a,b]. As evident below, 
this theorem is easy to apply to nonlinear and distributed parameter systems. In 
the following example, it is also shown to be useful for determining the stability of 
time varying systems. 
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Example 3.5 

[Mukherjee 1992a] 
Consider the damped Mathieu equation: Xi = x2, x2 = —X2 — (2 + sint)xi. 

We select the candidate Lyapunov function: U(t,Xi,x2) = Xi2 + (a+»int)» w^ch 

we observe is positive definite and analytic for all (t,xi,x2). Upon differentiation 
of U, and substitution of the equations of motion, we find that 

•    „ , , »        , , .     4 + 2 sint + cost 
U(x) = -x2

2g(t),    where   g(t) =      (2 + ^)2 

Even though U(x) is nonpositive, since U(x) does not depend upon Xi, it is obviously 
not negative-definite and without further analysis, we can only conclude mere 
stability, however, we'd like to make a stronger statement and conclude asymptotic 
stability. This can be done by considering the applicability of Theorem 3.9. Note 
that the set Z of points for which U(x) vanishes is the set of all real values for x\, 
and zero values for x2. Upon taking the second and third derivatives of U, and 
evaluating them on Z, we find that 

J2TT J3TT 
i£ = 0,   and   |£ = -2(2 + sint)2g(t)xi2,    y   x€Z 

Since the second derivative of U vanishes on Z and the third derivative is negative 
on Z, except at the origin, we conclude that all of the conditions of Theorem 3.9 
are satisfied; indeed this system is proven globally asymptotically stable. 

3.4.3    Lyapunov Control Law Design Method 
Here, we present a method for generating globally stable feedback control laws for 
maneuvers of nonlinear systems and distributed parameter systems. A Lyapunov 
function is selected which is conserved for the uncontrolled system. Then when 
the control u(t) ^ 0 is considered, U(x) depends upon u(t) through the equations 
of motion. One strategy is to select the control function u(t, x) (from a set of 
admissible controb) to make U(x) as negative as possible; this Lyapunov Optimal 
control strategy ensures that U(x) will locally approach zero as fast as possible. 
On the other hand, any control law which makes U(x) negative is asymptotically 
stabilizing, and in many instances, it will be seen that very simple, yet globally 
stable control laws can be determined which are attractive for applications. 

We will use specific dynamical systems to introduce Lyapunov control design 
methods for nonlinear and distributed-parameter systems. A useful viewpoint is to 
consider simultaneously U(x) and u(t, x) "available for selection" in the design pro- 
cess; the class of problems for which globally stable feedback laws can be obtained 
is surprisingly large. There is coupling between the selection of the Lyapunov func- 
tion and the corresponding stabilizing control laws. We place the initial emphasis 
upon using work/energy methods together with stability theory to determine the 
structure of a stabilizing feedback law and thereby parameterize an infinite family 
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of stable controllers. Conventional nonlinear programming algorithms can then be 
invoked to optimize some specified closed loop performance criterion over the sta- 
ble set. This gives rise to "Lyapunov optimal" control. Although we subsequently 
develop methods for controlling multi-body manipulators, and for distributed pa- 
rameter systems governed by hybrid coupled sets of ordinary and partial differential 
equations, we first consider a system described by a 6-th order set of nonlinear, or- 
dinary differential equations. 

Example 3.6 Large Angle Rigid-Body Maneuvers 

Some key ideas are easily introduced by considering general three dimensional 
nonlinear maneuvers of a single rigid body. The equations governing large motion 
can be written as [Junkins 1986] 

Ii<I>i = (I2 —13)^2^3 + "I 
l2u2 = (I3 — I1V3W1 + u2 

I3W3 = (Ii — I2V1U/2 + u3 

2qi = Ui — W2q3 + &Z<l2 + <li(qiwi + <l2w2 + q3"3) 
2q2 = W2 — W3qi + Wiq3 + q2(qiwl + q2«2 + q3"3) 
2q3 = w3 — Wiq2 + o>2qi + qzfaui + q2<«>2 + q3^3) 

(3.25) 

where (uu^2tus) and (qi,q2iq3) are the principal axis components of angular 
velocity and the Euler-Rodriguez parameters ("Gibbs vector"), respectively. Note 
that (Ii, I2,13) and (ui, U2, U3) are the principal moments of inertia and the principal 
axis components of the external control torque, respectively. 

For the case of zero control torque, it can be readily verified that total rotational 
kinetic energy is an exact integral of the motion described by differential Eq. (3.25), 
viz., 2T = (Iiwf + I2W2 + l3wD- Motivated by the this total system energy integral, 
we investigate the trial Lyapunov function 

u =|(ii«?+i2w| + i3«l)+ko(qHql + q|) 
= kinetic energy +kotan2(|) ^ 

where <j> is the instantaneous principal rotation angle (about the instantaneous 
Eulerian principal rotation axis, from the current angular position to the desired 
final angular position of the body [Junkins 1986]. It is apparent that the additive 
term kn(qf + q| + q|) can be viewed as the potential energy stored in a conservative 
spring, and as will be evident below, this is just the most obvious choice for a 
positive measure of departure from the orientation qi = 0, q2 = 0, q3 = 0) . We 
can anticipate that the system dynamics will evolve such that U is constant if the 
only external torque is the associated conservative moment. Of course, we are 
not interested in preserving U as a constant, but rather we seek to drive it to 
zero, because it measures the departure of the system from the desired equilibrium 
state at the origin. We further anticipate the necessity to determine an additional 
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judicious control moment to guarantee that U is a decreasing function of time. It 
is obvious by inspection that U is positive definite and vanishes only at the desired 
state qj = w, = 0. Differentiation of Eq. (3.26) and substitution of Eqs. (3.25) lead 
directly to the following ("power") expression for U: 

s 
ü = J>i[ui+koqi(i+q?+q!+q!)] (3.27) 

Of all of the infinity of possible control laws, we can see that any control Uj 
that reduces the bracketed terms to a function whose sign is opposite to u\ will 
guarantee that Ü is 'globally negative semi-definite. The simplest choice consists of 
the following: Select Ui so that i-th bracketed term becomes — kiwj. This gives the 
control law 

Ui = -[kiWi + k0qi(l + q? + aj + q!)], i= 1,2,3 (3.28) 

The closed loop equations of motion are obtained by substitution of the control 
law of Eq. (3.28) into the equations of motion of Eq. (3.25) to establish 

Iiwi    = (I2 - I3)w2w3 - [kiwi + k0qi (1 + q? + q? + q|) 
I2w2   = (I3 - I1JW3W1 - k2w2 + k0q2(l + q? + q2 + q!) (3.29) 
I3W3   = (Ii — I2)tJiu>2 - [k3W3 +-koqs(l + q? + q2 + q|) 

Since U = — (kiwj + k2w| + k3w|) does not depend upon the q's, it is only a 
negative semi-definite function, and while we have stability, if we choose all kj > 0, 
we cannot immediately conclude that we have asymptotic stability. We can prove 
that we do indeed have asymptotic stability, for illumination we estabilish this truth 
by two logical paths. 

Path 1: This analysis is physically motivated, we try to see if there is some 
equilibrium point or trajectory other than the target state (the origin) where 
the system can get "stuck" with U(x) = 0. We directly investigate the above 
three closed loop equations of motion [Eqs. (3.29)] for. the existence of equilibrium 
points in these nonlinear closed loop equations of motion. It can be verified 
that (qi,q2,q3,wi,w2,W3) = (0,0,0,0,0,0) is the only equilibrium state where 
all velocity and acceleration coordinates vanish. In fact, imposing the conditions 
(ui,U2,ua) = (0,0,0) and (a>i,u>2ifc>3) = (0,0,0) on the above closed loop equations 
of motion immediately gives the requirement that the q's satisfy the three equations 

0 = -[koqi(l + q? + q! + q!)],    for i =  1,2,3 

and it is obvious by inspection that these three nonlinear equations are simultane- 
ously satisfied only at the origin. 

Since we have shown that (wi 56 0,w2 ^ 0,<I>3 ± 0), for (qi 56 0,q2 ^ 0,q3 ^ 0), 
everywhere except the origin x = (qi,q2,q3,wi,W2,W3)T = (O.O.O.O.O.O)1", we 
conclude that U(x) = 0 can only be encountered for (qt 7t 0,q2 #0,q3 ^ 0) at 
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(possibly) apogee-like points in the behavior of U (Ü instantaneously vanishes 
but these points cannot be equilibrium states because (u»i # 0,(1/2 # 0,w3 ± 0). 
Therefore, we are guaranteed that U(x) < 0 almost everywhere [thus, we have 
the ideal situation that the largest invariant subspace is all of state space]. * We 
asymptotically approach the origin from all finite initial states and, therefore, have 
global asymptotic stability. 

Path 2: This analysis is more formal and procedural (exactly analogous to 
Example 3.5), we simply apply Theorem 3.9. First notice the set Z where U(x) 
vanishes is the set of arbitrary real values for the q's and zero values for the w's. It 
can be verified by direct differentiation of U that, for general motion 

^ = -2X>aw,    and   ^ = ^ktf+ u>A). (3.31) 
d i=l >=1 

Upon evaluation of these derivatives on Z where angular velocity vanishes 
(w1,w2,w3) = (0,0,0), from the closed loop equations of motion, the nonzero accel- 
eration components are u\ = -k0(l + q? + ql + q|)(qi/Ii). we find that 

0 = 0,     and     0 = -k2(l + q? + q! + q|)2Ek'(f)2.     V    XGZ    ^ 

Since the second derivative of U vanishes everywhere on Z, the third derivative is 
negative-definite everywhere on Z, the conditions of Theorem 3.9 are fully satisfied, 
and we again conclude that the nonlinear control law of Eq. (3.28) gives us globally 
asymptotically stable attitude control. 

Since we have shown U to be a positive-definite, decreasing function of time 
along all trajectories, and since it vanishes at the origin, then the necessary and 
sufficient conditions are satisfied for global Lyapunov stability. We have implicitly 
excluded the geometric singularity (qj —»oo) associated with this parameterization 
of rotational motion as <f> —* nir; we can use the quaternion or Euler parameter 
description of motion and avoid all geometric singularities as well. This path has 
been successfully pursued in [Oh 1991], [Wie 1989]. 

The nonlinear feedback control law of Eq. (3.28) guarantees stability of the 
nonlinear closed-loop system under the assumption of zero model errors. In 
practice, of course, guaranteed stability in the presence of zero model error is not 
a sufficient condition to guarantee stability of the actual plant having arbitrary 
model errors and disturbances. On the other hand, rigorously defining a region 
in gain space, guaranteeing global stability for our best model of the nonlinear 
system is an important step; it is reasonable to restrict the optimization of gains 
to this stable family of designs. The determination of the particular gain values, 
selected from the space of globally stabilizing gains, is usually based on performance 
optimization criteria specified in consideration of the disturbance environment, 
sensitivity to model errors, desired system time constants, actuator saturation, and 
sensor/actuator bandwidth limitations. 
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Before generalizing the methodology to consider multibody and partial differ- 
ential equation systems, it is important to reflect on the selection of the Lyapunov 
function previously given. Notice that, if a system has no inherent stiffness with 
respect to rigid-body displacement, it is necessary to augment the open-loop energy 
integral by a pseudopotential energy term [such as k0(q? + oj + q§) in the preceding 
example]; generally speaking, the pseudoenergy term should be defined, if possible, 
such that the resulting candidate Lyapunov function (U) is a positive definite mea- 
sure of departure motion that has its global minimum at the desired target state. 
Then the stUl-to-be-determined controls are usually selected as simply as possible 
(from an implementation point of view) to force pervasive dissipation (U < 0) of 
the modified energy (Lyapunov) function along all trajectories of the closed-loop 
system, and thereby guarantee closed-loop stability. 

To illustrate the relationship between the choice of the Lyapunov function and 
the resulting family of stabilizing control law, let us consider a slight variation 
on [Tsiotras 1994] the above developments. In lieu of the Lyapunov functions of 
Eq. (3.26), we choose a logarithmic measure of attitude error 

U = 1 (IlWa + I2W| + Is«*) + ko In (1 + q| + q\ + q|) (3-33) 

Proceeding analogously to the above developments, it is easy to verify that 

U = J>.[ui+k0qi] (3-34> 
i=l 

so that we can see that the following linear feedback law is globally stabilizing 

u^-koqi-kiw,,        i = 1, 2, 3 (3.35) 

Contrasting the two stabilizing control laws of Eqs. (3.35) and (3.28), it is clear 
that the simpler linear law of Eq. (3.35) is likely more attractive as regards 
implementation, unless the nonlinear feedback of Eq. (3.28) is found, in some 
circumstances, to give a desirable closed loop response. 

This example points out clearly the coupling between selection of the "error 
energy measure" and the resulting globally stabilizing controllers; the situation is 
quite analogous to applications of optimal control theory, wherein there is coupling 
between the choice of the performance index and the resulting optimal control law. 
Although the above insights are useful, definitive criteria for optimal selection of the 
Lyapunov function do not exist. However, the above examples suggest an attractive 
strategy that defines the 'main part' of the Lyapunov function with relative weights 
on the portions of total mechanical energy associated with structural subsystems 
[Junkins 1993], and use of the work/energy method provides a very efficient bypass 
of most of the algebra and calculus leading to the power equations, analogous to 
Eq. (3.27), for each particular physical system [Oh 1991]. The lack of uniqueness 
of the Lyapunov function is not necessarily a disadvantage in practice because it 
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is a source of user flexibility providing needed control design freedom qualitatively 
comparable to the freedom one has in selecting performance indices when applying 
optimal control theory. Indeed, formulating the Lyapunov function as a weighted 
error energy to be dissipated by the controller is qualitatively attractive for both 
linear and nonlinear systems, since this gives intuitive and physical meaning to the 
Lyapunov function and the corresponding control gains. 

3.5    COOPERATIVE CONTROL OF MULTIBODY 
MANIPULATORS 

3.5.1    Mechanics 
Prior to addressing the first of two studies wherein the above ideas are applied, 
consider the class of dynamical systems whose behavior is governed by the discrete 
coordinate version of Lagrange's equations 

*(*)-£■=*■ «-«•-•"        (336) 

or, in matrix form 
±(?£) -°£ = Q (3.37) 
dtVöq/      Öq      W V 

where the Lagrangian £ is defined in the classical form £ = T - V. Restrictions 
imposed in deriving Eqs. (3.37) are such that the coordinates q; are independent 
functions of time only and that the potential and kinetic energies have the functional 
forms T = T(q,q,t), V = V(q), and the nonconservative virtual work has the 

form £Wne = Eili Qi&Zi = Q
Tä<

1- 
Thus- E<*s- t3"37) are valid for nonlinear> 

nonconservative systems as well as linear, conservative systems. 
A modest generalization allows Eqs. (3.37) to be applied to significant classes 

of redundant coordinate or constrained systems (i.e., the coordinates q-, are not 
independent). To accommodate kinematic constraints which depend on the qs and 
their time derivatives, Lagrange multipliers can be introduced to generate additive 
generalized constraint forces on the right-hand side of Eqs. (3.37) [Junkins 1986]. 
In particular, for m Pfaflan (linear in the generalized velocities) constraints of the 
matrix form 

Aq + ao = 0 (3-38) 

The generalized constraint force that needs to be added to the right-hand side 
of Eqs. (3.37) is the vector ATA, where q is an N x 1 vector containing the 
generalized coordinates, A = A(q) is an m x n continuous, differentiable matrix 
function, a<,(q) is a smooth, mxl vector function, and Aisanmxl vector of 
Lagrange multipliers. One standard solution process is to differentiate the kinematic 
constraint of Eqs. (3.38) to obtain 

Aq + Aq + ao = 0 (3.39) 
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Equation (3.39) can be solved simultaneously with Eqs. (3.37) for q and A, to 
determine the coordinate accelerations and constraint forces as a function of the qs 
and their time derivatives. Note that the N differential equations of Eqs. (3.37) must 
be solved simultaneously with the m kinematic constraint differential equations 
[Eqs. (3.37)] in order to determine the N+m unknowns in the vectors q and A(t). 
During recent years, significant methodlolgy has evolved for effecting numerical 
solutions for differential/algebraic systems of equations, see Ahmad 1991 and 
Krishnan 1992 for discussion of the recent literature. 

For a significant class of systems, the algebra and calculus required in a 
straightforward application of Lagrange's equations can be dramatically reduced. 
For the the most common case of natural systems for which the kinetic energy is a 
symmetric quadratic form in the generalized coordinate time derivatives, one finds: 

T = \ E IX*) ** = ^TM* (3-4°) 
i=l j=l 

Note that q is an N x 1 configuration vector of generalized coordinates. It is 
convenient (and important) to collect the mass matrix M = M(q) before the 
differentiations implied by Lagrange's equations are carried out; this simple point 
seems to elude many individuals when symbolic codes are written to automate 
derivation of equations of motion. Including the possibility of Pfaffian nonholonomic 
constraints, the equations of motion follow from Eqs. (3.37) as the following N+m 
system of differential and algebraic equations: 

Mq + G + ^ = Q + ATA,    Aq + ao = 0 (3.41) 

where f^ is the N x 1 vector gradient of the potential energy function, and 
G = G(q, q) is the N x 1 vector: 

G»KTC«4 -. ecrotf, £.i(£ + ^_*fe)    (3.42) 

and where the last equation that generates the typical element c£? of the NxN 
symmetric matrix C(i> = C(i)(q) is the Ckrisloffcl operator. 

It is apparent that deriving the equations of motion, for natural systems subject 
to Pfaffian nonholonomic constraints, has been reduced to formation of the kinetic 
energy to identify the mass matrix, then carrying out the indicated gradient 
operations in Eqs. (3.42), (3.43) on the mass matrix elements mik and the potential 
energy to form the vectors G = G(q, q) and dV/dq. 

For the case that the nonconservative forces are generated by an me x 1 vector 
u of control inputs, we have Q = Bu and Eqs. (3.41) assume the following form 

M(q)q+f* + G(q,q)    =Bu + ^(q)TA 
A(q)q + a0(q) =0 {iM) 
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In order to appreciate some of the issues of cooperation associated with control 
design for redundantly actuated systems, we consider a specific example in the 
following discussion. 

3.5.2    A Prototype Cooperative Control Example 
Equations of Motion 

Consider the pair of robot arms shown in .Figure 3.1. We assume four active joints; 
namely, the shoulder and elbow joints on the left and right robots, for simplicity; 
the wrist torques are neglected. The objective is to design a feedback controller to 
command the four torques so as to stabilize the payload with respect to a prescribed 
trajectory of the payload moving from an arbitrary reachable State A to an arbitrary 
reachable State B. It is desired that the control law have the following attributes: 

1. Accommodate an arbitrary feasible reference trajectory. 

2. Be of a simple feedforward/output output error feedback form. 

3. Guarantee global asymptotic stability, including nonlinear kinematics. 

4. Handoff smoothly between large trajectory-tracking motion and terminal error 
suppression, without gain scheduling. 

We present a control strategy possessing these four desirable attributes. 
Under the assumption that each manipulator is composed of two rigid links, that 

the payload is a rigid body, and that the entire system undergoes only planar motion, 
but retaining all nonlinear kinematic effects, the kinetic energy of the system has 
the natural form 

T    = iqWqJtt 
(3.44) 

= Iqi^M^qOlqL + §q£[MR(qR)]qR + §q?[MP (<*)]<* 

where the configuration coordinate vector naturally partitions into left(L), right(R), 
and payload(P) configuration coordinate subsets as 

{qL | T 

<1R   ?={*!    02   : 06   05    : 03   xes   yeJ 

The 7x7 system mass matrix has the block diagonal structure 

M(q) = MR 
MP 

(3.45) 
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<*c3-yc3> 

(a) Configuration Sketch       (b) Substructure Systems and Notation 

(c)  Laboratory Experiment at the Naval Postgraduate School 

Figure 3.1. Cooperative control multibody manipulator experiment 
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where, introducing the elbow angles tf0- = Oj - 0it the substructure mass matrices 
are compactly written as 

(3-46) 

(3.47) 

\h + Jmifi + m2l\     im2/i/2C05Ö12l 
ML=

[    \mihhcos9n fc + Wi   J 

hn+UUcosBeA 
J4+W4 J 

r 's + ims/f + null     \mAhUcos06S 1 
MR = [    ItmhUcosees '   • 1      " 

and 

MP = TJI3 

TTI3 

(3.48) 

The equations of motion follow in the form of Eq. (3.43), where, using Eq. (3.42), 
the nonlinear vector G(q, q) has the following specific form 

(
G

L1 G(q,q)=|G£j,     {%} = ! 
—m.26\lil2sinB\2 

m^Olli^sinB 12 

—m40lUlssinO6s 
m^lUhsinBes 

(3.49) 

The control vector (containing the four shoulder and elbow torques) is 

u = {ui  ti2  «6  u5}T (3.50) 

and, using the virtual work principle, we can establish that the control influence 
matrices are 

Br       O r. ,1 
(3.51) B = 

fBL °1 
0 BR 
0 0 

>    BL = BR=[0      ^ 

Upon taking the origin for an (x,y) coordinate system as the base hinge point of 
the left arm, and letting the x axis pass through the base hinge point of the right 
arm, the geometric constraints arising from pinning of the left and right robot wrists 
to the payload at points Q and P are captured by the four holonomic constraints: 

licosBi + l2cos92 + U3cos93 - ies 

lisinOi + l2sin82 + \l3sinO3 — yCi 
lscos96 + Ucos8s - U3cos93 -.xCi — D 
lssin96 + Usinös - \l3sin93 - ye, 

= 0 
= 0 
= 0 
= 0 

(3.52) 

Upon differentiation with respect to time, Eqs. (3.52) yield a kinematic constraint 
of the Pffafian form [the second equation of Eqs. (3.43)], with ao = 0 and with 

— I l3sin93 

A(q) = 

—Iisin9i 
licosBi 

0 
0 

/2sin02 
12C0S92 

0 
0 

0 0 
0 0 

—I$sin96 -Usin9s 

lscos96 Ucos95 

h l3cos93 
I l3sin93 

— i l3cos93 

-1 
0 
-1 
0 

0 
-1 
0 
-U 

(3.53) 
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and also, for subsequent use, we record the time derivative of A as 

-\lzB3cosQ3   0 
■\hhsinez   0 

(3.54) 

A(q,q)       = 
-liOicosBi    —l392COS$2 0 0 

-li6isin$i    -l262sin02 0 0 2. 
0 0 —l566cos66   -UescosOs     \l363cosB3     0 
0 0 -ls66sin86   -UOssinOs     %l363sin63     0 

Now, solving the first of Eqs. (3.43) and Eq. (3.39) simultaneously for the 
generalized constraint force Qc ~ ATA and Mq, we obtain 

Qc   =   ATA = Fi + F2u 
Ft    =   A^AM-^TJ-^G-Aq) 
F2    =   -AT(AM"1AT)-1AM-1B 

and 
Mq+ G = Bu 
G = G - AT(AM-1AT)"1 {AM"rG - Äq} 

B = [i - AT(AM"1AT)"1AM-1] B 

It is natural to introduce the consistent partitions 

"ML 

(3.55) 

(3.56) 

M = MR 
MP 

B 
BL 
BR 

BP J 
(3.57) 

and rewrite the first of. Eqs (3.56) as three equations 

ML<1L + GL(q,q) = BL(q,q)u 
MRqR + GR(q,q) = BR(q)q)u (3.58) 
Mpq> + GP (q,q) = BP(q,q)u 

This constraint-free form of the equations of motion implicitly reflects the con- 
straints; the third of Eqs. (3.58) is sufficient to describe the dynamics of the system, 
since all other coordinates can be determined as a function of (qp, qp) through use 
of the constraint equations. 

Prior to discussion of control law design approaches, it is useful to consider the 
inverse kinematics problem: Given a smooth desired (prescribed) payload motion 
qp(t), determine feasible/desirable corresponding control inputs. Inverse kinematics 
for the case of redundant coordinates involves some subtle issues which are captured 
in the following sections. 

Inverse Kinematics 

Notice that the four holonomic constraints of Eqs. (3.52) reduce the number of 
degrees of freedom from seven to three. Thus, in principle, we could derive all co- 
ordinates and their time derivatives history from a given trajectory of the payload 
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coordinates qp(t) = [fc(Q xea(t) ye,(*)]T. Obviously, if we know all of the coordi- 
nates and their first two time derivatives, then the differential equations of motion 
[Eqs. (3.56) or (3.58)] can be considered algebraic equations for determination of 
the corresponding control torques. Since there are only three degrees of freedom 
and four control torques, there is obviously an issue of uniqueness, and it is through 
the expolitation of the lack of uniqueness that we can seek an optimal control by 
which the robot arms may cooperate in carrying out the controlled maneuver. It is 
also important to anticipate geometric singularities on the boundary of the reach- 
able region (the maximum feasible workspace). First let us consider some geometric 
issues. 

With reference to Figure 3.1, observe that a given motion qp(t) of the payload 
dictates the motion of points P and Q though the four geometric formulas: 

XQ = xes - {%) cos63 

VQ = Va ~ (psinß3 1 (3 59) 
xP=xe3 + te)cos03 ( 
yp = Vo + (£) sin63 

and obviously, the companion equations can be obtained to determine the first two 
time derivatives of the grapple point coordinates (xP,yp,XQ,yQ) as a function of 
the payload motion 

\6z,xei ,yCi fiz,xet ,yes ,h,xe* ,ye, J 

These straightforward equations are not recorded for the sake of brevity. However, 
given the payload motion, we can obviously determine the grapple point's velocity 
and acceleration coordinates 

(xP ,yp ,XQ,yQ,xp,yP,XQ ,yq) 

by differentiation of Eqs. (3.59). We consider how to determine the motion of the 
left and right robot arms. Considering the geometry of the left robot arm, from 
Figure 3.1, it is evident that the left shoulder and elbow angles 6X and 62 are related 
to the instantaneous position of the grapple point (ZQ.J/Q) by 

01       =    ßlL + ß2L 1 
ßlL    =   tan-^yq/xq) 

Similarity, considering the right robot, it is evident that the right robot angles 66 

and 8s are related to (xp,yp) by 
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ßlR 

/?IR - ß*R 
tan'1 (yp/xp) 

cos    U[(i>-U'+,'>J' two roots, take ftjj > 0 (3.61) 

It can be verified taking fix. and Aä positive corresponds to the "elbows out" 
configuration shown in Figure 3.1. Obviously, the "elbows in" configuration results 
from choosing the negative signs for ßiL and &«, and two other asymmetric con- 
figurations are possible if opposite signs are selected. The lack of uniqueness is a 
consequence of redundancy and the choice of control modes is dictated by practi- 
cal configurations. Except near certain singular configurations discussed below, it is 
possible to manipulate smoothly through an infinite family of neighboring configura- 
tions for any one of the four choices on signs for fti(f) and /?2ä(0- Straightforward 
differentiation yields the following kinematic equations which determine the first 
two time derivatives of the left and right shoulder and elbow angles: 

AE1 

1-1 

XQ 

VQ 

xp 
yp 

}-MU: (3.62) 

where we have introduced the matrices 

_ \-hsinOi    -l2sin62"\       .     _ \ —Issin6s 
licos 9s 

—UsinOs 
l+cos 6s ] (3.63) 

It is easy to verify that the above matrices are singular if B\ — 02, and 06 = 05, 
respectively. It is obvious that these singularities corresponded to the left and right 
arms being fully extended, and it is clear that these boundaries of the workspace are 
to be avoided [the reachable set of points interior to the workspace must be taken 
into account in the trajectory planning for the payload, leading to the nominal 
trajectory qp(t) of the payload]. 

Cooperative Actuation 

Given the inverse kinematic solution for all system coordinates and time derivatives, 
as a function of a prescribed payload trajectory qp(t), the cooresponding control 
torque vector u(t) is not unique, for the case of more actuators and degrees of 
freedom. In our particular example, since we have four actuators and three degrees 
of freedom, we expect an infinity of torque vectors for the nominal maneuver. As 
in the case of human beings jointly manipulating a heavy object, we desire to 
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exploit the redundancy of actuation to cooperate in the sense that large, nonworking 

'^t^h^c^ations - a control strategy, we introduce the following 

cooperation criterion to be minimized 

J = |U
T

WUU+|QC
T

WCQC (3-M) 

subject to satisfying the third of Eqs. (3.58). Notice that the weight matrix selection 
pS^the fSility of emphasizing small torques (u) or -^«Mtr^*^ 
?Q - ATA) or a compromise between these two competing objec ives. Using the 
grange Multiplier rule, we introduce the m x 1 Lagrange multiplier vector 7 and 
the augmented function J, and use Eqs. (3.55), (3.58) to write 

3 = iuTWuu + i(Pi + F2u)TWe(F1 + F2u) + 7
T (MPÖP + GP - BPu)   (3.65) 

2 » 

Requiring that the gradients VuJ and V7 J both vanish as a necessary condition 
for minimizing J leads to the solution 

u    =    HJBpT-FjWcF!} 

7    =    (BPHB?)"l{Mpqp + Gp + BpHFjWcFx} (366) 

•■■-' H   =   (Wu + FjWcFa)"1 

Some simple calculations with example payload motions reveal the utility of this 
formulation of the inverse kinematics and cooperative actuation strategy. 

An Example Nominal Payload Trajectory 
Perhaps the simplest and easiest-to-motivate scheme for prescribing a nominal 
motion qp(t) for the payload is to adopt a smooth polynomial spline from the 
initial state qp(t0) to the target final state qp(f/) of the form 

qp(t) = /(r){qp(f/) - <*(*<>)} + qp(*o).    r = ^rft 
qp(0 = /0-){qp(*/)-<ip(M}.   />) = ^T3rs 

qp(f) = /(r){qp(t/) - qp(:0)},    /(*) = (ts-u? dr> 

where we choose the particular shape function 

/(r) = 1^(10-15r +6T
2
) 

iL _ T2(30 _ 60r + 30r2) (3.68) 
^ = T(60-180T + 120T

2
) 

This trajectory can be shown to be optimal for the idealized case where we 
consider only the payload trajectory and the vector sums (F, M)of the forces 

(3.67) 
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and moments applied to the payload, without regard to how these are generated; 
Eqs. (3.67), (3.68) can be shown [Junkins and Turner 1986] to simultaneously 
minimize the translational and rotational jerk integrals 

Jx = f FTF<fc,   and    J2 = / ' MTM<ft 
•/«„ "'«0 

subject to satisfaction of the third of Eqs: (3.58), and the boundary conditions: 

qp(to) = specif ied initial position 
qp(*o) = 0 
qp(*o) = 0 (3 6o\ 
qp (tj) = specif ied final position 
qp(ty) = 0 
qp (tj) = 0 

Since the idealized optimal trajectory [Eqs. (3.67), (3.68)] does not explicitly 
consider workspace constraints, this nominal motion must be checked to make sure 
it remains feasible throughout the motion, and of course, optimality with respect 
to the entire systems dynamics and minimization of other performance measures 
cannot be claimed. These smooth, easy-to-compute, motions usually represent 
excellent starting solutions, however, and we elect to use this family of solutions 
to generate the nominal trajectories throughout the remainder of this chapter. A 
typical example motion of the system is shown in Figure 3.2. 

A Lyapunov Stable Tracking Control Law 

A smooth nominal (reference) trajectory for the entire system can be computed 
using Eqs. (3.67), (3.68), and via inverse kinematics, the left and right robot joint 
coordinates are determined from Eqs. (3.59)-(3-62), while the nominal (cooperative) 
shoulder and elbow torques are determined from Eqs. (3.66). This is a for- 
example way to determine the reference trajectory, and can be replaced by a more 
appropriate path-planning method in particular applications. However the reference 
trajectory satisfying the boundary conditions of Eqs. (3.69) is determined, we denote 
all state and control variables along the reference trajectory with a subscript ref. 
Of course, in actual applications, we can expect that the system will not follow the 
reference trajectory qref(0 exactly when we command the control iirrf(0i due to 

model errors, external disturbances, and nonideal actuation. We seek a perturbation 
6u = function(£q(*), 6q[t)) which will guarantee that an intitally disturbed motion 
will asymptotically return to the reference trajectory in the absence of model or 
implementation errors. Actually, it is preferable that the control perturbation 6u 
is in output feedback form where it depends only upon a measurable subset of the 
coordinates and their time derivatives. 

In view of the four kinematic constraints, we know that a minimal coor- 
dinate description requires only three generalized coordinates.    By considering 
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0 2 4 6 8   t[s] 4 6 8 10 t[s] 

Figure 3.2. Nominal maneuver, p&ylo&d rotation, and actuator torque trajectories 

(q,q)to be functions of (qp.qp), in the third of Eqs. (3.58), we are motivated to 
investigate the kinetic energy 

TP = 2^PMP^P 

and observe that 
fP = q?BPu 

This motivates the Lyapunov function 

U = «^qpMptfqp + 26qPKl6qp 

(3.70) 

(3.71) 

(3.72) 

where Sqp = qp — qpref(f). For the simplest case that qprer(0 = constant, then it 
is easy to verify that the Lyapunov function derivative is 

U = 5qp [§pu + Ki$qpl (3.73) 
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and selecting the bracketed term to equal -K25qp (so that U is never positive), we 
are led to the global stability condition 

BPu = -[K:5qp + K2«qp] (3.74) 

Since Bp is a 3 x 4 matrix, it is evident that u is underdetermined and we are 
free to introduce an optimization criterion to select a particular control satisfying 
Eq. (3.74). One attractive possibility is to minimize uTu; this gives the minimum 
actuator torque controller 

u = -B£ (BPBJ)"W<IP + K2«qP] (3.75) 

For the trajectory tracking case, in which we desire to stabilize the motion 
with respect to a prescribed reference motion, the situation is more complicated. 
Suppose that the reference trajectory qp^t) and an associated control u„f (f ) are 
determined consistent with the system dynamics [for example, using Eqs. (3.59)- 
(3.69)]. Then it follows that the payload dynamics at every instant on the actual 
and reference trajectories satisfy 

MPqp_+Gp = Bpu (37g) 

Mp,.,qpr., + GP„, = Bp„fuMf 

and it also follows that the Lyapunov function [Eq. (3.72)] has the time derivative 

Ü = 6<g [§pu - Bpf„u„f + KxSqp - 6GP - 5MP„fqp„f + MP5qP]       (3.77) 

Setting the bracketed term to —K25qp gives the stabilizing control condition 

BPu = Bp„fu,., - [Ki*qP + K25qP] + [SGP + SMp^qp,,, - MP$qP]     (3.78) 

and for the case of minimum control torque, a particular solution of Eq. (3.78) gives 
the nonlinear feedback law 

u = Bp^BpBpV1 {BpMfu,., - [Kxfqp + K25qP] 

+ \6GP + SMpt.,qp„f - MpSqpj ] 

This law, while guaranteeing stability (neglecting model errors), is cumbersome 
to implement due to the detailed computation required to produce all of the 
nonlinear terms. Note that the payload coordinates qp = [Ö3 Xc3 yc3]T may not 
be directly measurable. For example, assume that the measurable quantities are 
°A = [0i 02]T and qR, = [06 0s]T, and the time derivaties thereof; then it is easy 
to verify from geometry that the payload coordinates are computable as follows 

fl, — */ITI-1 fyq-ypl _ *„_-l f   (t»«fa*«+l«»»»*»)-(li««n*i+>a««*n*a)   } 
03 — tun       |rq-*pj — *"»       [(D+/jco<«.+l<e<.»«,)-(l,eo»«,+l3co»9,)J 

*es = 10=Q + *p) = \[{D + hcosB6 + Ucos6s) + (ZlCos0i + l2cos62)]     (380) 
Vc3 = 5 (yQ + yp) = ^[(ksinOe + Usin8s) + {lisinBi + /2sin02)] 
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and the time derivative qP   =   [8* *,  Xof follows from differentiation of 

^"i!'-^alternative to the above developments, and to obtain a direct output error 
feedback form for the control law, we can observe the following kmenatic form for 

the work rate of the control torques 

t = «!<?! + u2e2 + use6 + u5es = | ^ } u = <£UL + q£UR 
(3.81) 

and it is obvious by inspection that setting uL = -K2_qL, "R = -K2RqR will 
decrease T for all nonzero motion of the system. This energy djssipative control 
suggests the following output error feedback law for controlling the departure motion 
relative to the reference trajectory 

«—w-Mi_)+*(&)}      (382) 

where the 4 x 4 positive definite gain matrices have the structure K\ - ^ Q K.R • 

It can be verified that the control law of Eq. (3.82) is guaranteed to be globally 
stabilizing only for the case that qref = constant. While global asymptitic stability 
is not guaranteed during the time interval {to < * < </}, it * guaranteed during 
the interval {z > i/}, for all reference maneuvers satisfying the boundary conditions 
of Eq. (3.69). These developments can be better appreciated in the light of some 
illustrative numerical examples, as provided in the next section. 

Cooperative Control: A Numerical Example 

To illustrate the above discussion, we consider each link of the robots to be 1 m 
long and to have a mass of 1 kg. The distance D between the shoulder joints is 
taken as 0.75 m, and the nominal initial and desired target values of five angles are 
listed in Table 3.1. The inverse kinematic process of Eqs. (3.59)-(3.69) was used 
to compute the solution shown in Figure 3.2. All the intial conditions were then 
perturbed by moderately large angles (order of 10°), and the feedback control law 
of Eq. (3.82) was used. . . 

A typical controlled response from large inital disturbances is shown m Fig- 
ure 3.3. Notice that the order of 10° initial errors are less than 0.5° by the nominal 
final time of 10 s; however, a few more seconds of terminal control are required toef- 
fectively null the errors. The weight matrices [in Eq. (3.64)] were W„ = I, Wc - 0, 
and the control gains [in Eq. (3.82)] were Kx = 0.51, K2 = 0.21; these affect the 
controlled response, however we found a large family of feasible values. From eval- 
uating the response using several other intitial conditions and variations in the 
selections of the control gains and weight matrices, we confirmed that a wide range 
of choices give excellent tracking stability over a large domain of intital conditon 
errors. Thus the control law of Eq. (3.82) seems to be an attractive candidate for 
practical applications. 
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Table 3.1. Initial and final angles for the nominal maneuver 

Oi[deg] e2[deg]     63[deg]       06[dtg]       Os[deg] time[s] 
initial:    121.0430 40.0323    00.0000     58.9570    139.9677        0 
target:    137.2041 -10.3342    90.0000    117.3017    142.3095        10 

The above results have been extended to more general multilink configurations, 
including base motion, and they have beeen successfully validated in an experimen- 
tal study [Yale 1993], including consideration of the case of the robot arms mounted 
on a movable base. 

X(-) 

"66 

~»3~ 

Controled Response 
of Angular Motion 

12 16      20 t[s] 20 t[s] 

Figure 3.3. Controlled response from disturbed initial conditions 
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3.6    DYNAMICS, STABILITY, AND CONTROL 
OF A DISTRIBUTED PARAMETER SYSTEM 

In Figure 3.4 we consider control of a rigid hub with four cantilevered flexible 
appendages. We consider the appendages to be identical uniform flexible beams 
and make the Euler-Bernoulli assumptions of negligible shear deformation and 
distributed rotary inertia. Each beam is cantilevered rigidly to the hub and has 
a finite tip mass. Motion is restricted to the horizontal plane and, control torque 
u(t) acting on the hub is the only external effect considered. 

We are interested in a class of rest-to-rest maneuvers, and under the previously 
mentioned assumptions, we can show that the beams will deform in the antisym- 
metric fashion (Figure 3.4), with the configuration's instantaneous mass center re- 
maining at the hub's geometric center. Also, because of the assumed antisymmetric 
deformation of the beams, in this section we need to concern ourselves only with 
the deformation y(x, t) of a single beam. We subsequently relax this restriction, to 
permit more general kinematic assumptions and the analysis that flows form it. We 
adopt the continuum viewpoint and avoid introducing spatial approximations in the 
application of Lyapunov stability concepts; the resulting control law and stability 
arguments will therefore apply rigorously to the distributed parameter system. The 
hybrid system of ordinary and partial differential equations governing the dynamics 
of this system is readily obtained from Hamilton's principle to be [Junkins 1993] 

Ihub0    =    u + 4(M0-SoLo) 

-(Mo-SoLo)    =    /LoPx(§+x0)dx + mt(L0 + &|L)+HOT 

/>(& + *&)    +    EI0 = O+HOT 

where 
(3.83) 

p — assumed constant mass/unit length of the beams 
El = assumed constant bending stiffness of the beams 

(M0l So) = bending moment and shear force at the root of the beam 
8 = hub inertial rotation 

mt = mass of the tip mass 
(L, L0) = distance from the hub center to the beam tip and the hub radius 

In Eq. (3.83), we denote higher-order terms by HOT to indicate other known linear 
and nonlinear effects (such as rotational stiffening, and shear deformation). The 
most fundamental developments do not consider these higher-order effects; however, 
we selectively discuss the generalizations that accommodate these effects as well. Of 
course, in general, there are unknown model errors and disturbances as well, and a 
practical control scheme must be stable in the presence of reasonable model errors. 
The boundary conditions on Eqs. (3.83) are: 
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Figure 3.4. Texas A&M flexible structure maneuver experiment 

at   x = L0:     y(t,Lo) = ^|    =°   (clamped beam geometric B.Cs) 

at   x = L:       S|L = °    (moment) (3-84) 

&iL = tt(L# + &|t)    <shear> Sx 

The total energy of the system (constant in the absence of control or distur- 
bances) is 

2E = Ihub(f)
2 + 4      £,(fc + x$)'dx 

+£EI (g)2dx+mt(L^+|^|L)] 
(3.85) 
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Motivated by results published in the recent literature (Refs. 3-5,19,21,22), 
we investigate the following weighted energy function as a candidate Lyapunov 
function: 

2U   =a1Ihubfl2 + a2(6-6j) 2 

+4a3 £/>(^+^)2dx+£EI(^)2dx+m'(^+^IJ: (3.86) 

where the positive weighting coefficients a,- are included to allow relative emphasis 
on the three contributors to the "error energy" of the system. Note that this 
is one of many possible ways to weight the mechanical system error energy, and 
merely provides one illustration of an approach. It is physically reasonable to 
consider placing relative emphasis upon dissipating subsets of mechanical energy 
as a control strategy, because some energy subsets are obviously more degrading of 
system performance objectives than others in practical applications. Since 6 does 
not appear in the total mechanical energy of Eq. (3.85), the total energy of Eq. (3.85) 
is only positive semidefinite. We have added the positive "torsion al spring energy" 
term a2{8 — 6j)2 in Eq.(3.86) as a pseudoenergy to make the target final state 

be the global minimum of U. It is obvious by inspection that imposing a,- > 0 in 
Eq. (3.86) guarantees that U > 0 and that indeed the global minimum of U = 0 
occurs only at the desired state (we wish to begin at rest and rotate to a new 
angular position 6 = 6/, suppressing vibration enroute and returning to zero flexural 
deformation in the final position). Differentiation of Eq. (3.86), substitution of the 
equations of motion [Eqs. (3.83) and (3.84)], and considerable calculus leads to the 
weighted power 

ti = -£■ = 6 [alU + a2{6 - 8j) + 4(a3 - ai)(L0S0 - M0)] (3.87) 

Since we require that U < 0 to guarantee stability, we set the term in brackets to 
—a^O, and this leads to the control law 

u = -— [a2(6 - 6}) + a<6 + 4(a3 - a^LoSo - M0)] (3.88) 

In [Oh 1992], we developed a shortcut based upon the work/energy rate method 
that avoids most of the algebra and calculus required to establish the weighted 
power expressions like Eq. (3.87), we could make use of this idea here to arrive 
more efficiently at Eq. (3.87). 

From Eqs. (3.87) and (3.88), and considering all possible values for the a», we see 
that the following /«'near, spatially discrete output feedback law globally stabilizes 
this distributed-parameter system: 
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u = -\gi(6 - 6j) +52Ö + gziUSo - Mo)]; (3 g9) 

gi > 0, 52 > 0, g3 > -4 for stability 

This control law is elegant. Notice that the rigorous stability proof does not depend 
on introducing spatial discretization methods such as the finite element method. 
Furthermore, we have verified from root locus calculations that the gam stability 
boundaries are apparently exact in this case (to 10 digits for the first 10 eigenvalues)^ 
Of important practical consequence, notice that controllers based on this law of 
Eq (3 89) axe easy to implement since no state estimation is required. The root 
shear and bending moment can be measured by using conventional strain gauges. 
The value and sign of the shear/moment feedback gain g3 = 4(a3 - a^/ai depends 
on whether we wish to emphasize dissipation of the beam vibration energy {for 
a3 > ai) or the energy of hub motion (for a3 < ai), as is evident from Eq. (3.86). 

Since ti = -M2 is not an explicit, negative definite function of the subset of 
state variables ,     . 

the stability arguments implicitly depend on the truth thai all infinity of the 
antisymmetric modes of motion of this structure, have generally nonzero hub angular 
velocity (6).    Note under the kinematic assumptions leading to Eqs.    (3.83), 
only antisymmetric modes are present, and no nontrivial motion can exist while 
the hub angular velocity vanishes identically for finite time intervals.   A more 
elegant proof of global asymptotic stability using the feedback law of Eq. (3.89) 
can be done by applying Theorem 3.9.    This has been carried to completion 
in [Mukherjee 1992], including consideration of the cases in which we relax the 
antisymmetric deformation assumption applied in deriving Eqs. (3.83), thereby 
admitting a richer and more general set of motions (the four beams are described 
by four distinct functions of space and time, and there are now four PDEs and one 
hybrid differential/integral equation). For this more general configuration, it can 
be shown that a single hub actuator cannot provide rigorous asymptotic stability, 
because only an antisymmetric subset of the modes are controllable by a hub 
actuator (physically/qualitatively, the uncontrollable modes have identical adjacent 
beams moving in opposition, which results in equal and opposite root moments and, 
because of this cancellation, zero hub motion). For rest-to-rest maneuvers, however, 
only the antisymmetric modes considered here are disturbable (by a hub torque 
actuator), and they are also controllable. Thus, for the assumptions/constraints 
imposed in deriving the differential equation model developed above, the control 
law of Eq. (3.89) is globally stabilizing. 

It is significant that this same linear feedback law of Eq. (3.89) maintains 
its globally stabilizing character even when the Euler-Bernoulli assumptions are 
relaxed to include the most common additional linear and nonlinear effects. In 
particular, we have verified that closed-loop stability is maintained when we include 
the following: rotational stiffening, Coriolis kinematic coupling terms, aerodynamic 
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drag, shear deformation, beam rotary inertia, and finite inertia of the, tipjna». 
The verification of these truths requires appropriate modifications of the kinetic 
and potential energy functions and, of course, the differential equations of motion 
£1 be generalised consistently. In particular, U = -a<f cari vanish only if he 
mnditions 0 = 0 0 = 0 can be encountered at some pomt other than U=0 (the 
target state), so the nonlinear proof proceeds directly from the closed-loop system 
differential equations by showing that the condition 6 = 6 = 0 occurs only at the 

desired equilibrium: 

(M.y(M).^LM = C</AM) 
In short, global stability of the system using the simple linear output feedback control 
law of Eq. (3.89) has been found to be very forgiving of the usual variations in 
modeling assumptions and, therefore, modeling errors. In this section, an indirect 
method of Lyapunov for analyzing the motion of a nonlinear system near•the 
equilibrium state has been presented, and also a method for generating globally 
stabilizing feedback control law for distributed-parameter structural systems has 
been discussed as an important application of Lyapunov direct method. 

We have discussed the vibration suppression problem of the hub-appendage 
configuration in the previous sections. As discussed above, the constant gam linear 
feedback control law works poorly if we try to use the same constant gams for 
both large angular motions_and for small terminal motions. This is because the 
large gains required for effective vibration suppression and disturbance rejection 
to accurately isolate the target state are typically several orders of magnitude too 
large for the en-route portion of the maneuver (i.e., the large gams appropriate for 
vibration suppression, when used during a large-angle maneuver, typically result 
in significant 6 overshoots and, often, actuator saturation). Also, the large initial 
torque command typically introduces a large vibratory transient into highly flexible 
structures.   From a qualitative point of view, if we wish to maneuver a highly 
flexible structure while suppressing vibration, then it is unlikely that we should 
initiate this process by hitting the structure with a large hammer! To obtain a 
control law more appropriate for near-minimum-time large-angle maneuvers with 
vibration suppression, stable tracking-type feedback control laws discussed in this 

section can be applied. .. .   j     w  i. 
Consider briefly the near-minimum-time maneuver of a rigid body. We know 

that the strict minimum-time control is a bang-bang law which, for the rest- 
to-rest maneuver-to-the origin case, saturates negatively during the first half of 
the maneuver and positively during the last half of the maneuver [Junkins 1986, 
1991,1993], [Meirovitch 1987], [Singh 1989], [Breakwell 1981], [Slotine 1991], [Van- 
derVelde 1983]. From an implementation point of view, the instantaneous switches 
of the bang-bang law are sometimes troublesome because (1) no torque-generating 
device exists that can switch instantaneously; (2) when generalized and applied to 
a flexible structure,   the bang-bang class of controls excite poorly modeled 
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higher modes; and (3) the switch times (and, therefore, the dynamics of the actual 
system) are usually very sensitive to modeling errors. 

An attractive family of parameterized sharpness approximations of the switch 
function has been introduced to modify the admissible controls in near-minimum- 
time control formulations. The approximation presented in [Thompson 1989] and 
[Byers 1990], involves transcendental functions, but recent analytical/experimental 
work [Junkins 1991,1993] indicates that a much simpler piecewise continuous spline 
approximation of the switching function is attractive from an implementation point 
of view. Using this approach, a typical near-minimum-time control law (for single 
axis, rest-to-rest maneuver of a rigid body) has the form 

I0 = u = dbumax/(At, tf, t) (3.90) 

where tf is the maneuver time and a = At/tf. We choose the (+) sign if 6f > 60. 
As a torque shaping function, we adopt the smooth sign function approximation 
/(At.tf.t): 

[&)'['-'&)]. for 0 < t < At 

1, for At < t < ^ - At = ti 

AA"-0-^-»(^)*['-»(^)]. *««**♦*-*. 
-1, for t2 < t < tf - At = t3 

Adopting the positive sign, Eq. (3.90) integrates to yield 

0(t)   =«o + *r.C/(At.tr,T)dr (3.91a) 

0(t)   =60 + (t- to)0o + V /to /t? AAt> »f• T2)dr2dn (3.91b) 

The integrations in Eqs. (3.91) can be carried out in terms of elementary 
functions, which are not presented here for the sake of brevity; the results of these 
integrations give Eqs. (3.93), (3.94) below. Figure 3.5 shows a maneuver resulting 
from these integrations for a typical selection of parameters (o = 0.25, umax = 400 
oz-in.), and a 40° rest-to-rest maneuver of a rigid approximation of the structure 
in Figure 3.4 and Table 3.2. For rest-to-rest maneuvers, we impose the boundary 
conditions: 

atto = 0:     0(0) = 0o,    6(0) = 0 . 
at time tf:   6(tt) = 6j,   0(tf) = 0 K      J 

and upon carrying out the integrations implied in Eq. (3.91), we obtain the useful 
relationship 
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Table 3.2.  Texas AfcM maneuverable flexible structure: configuration parameters 

Total undeformed system inertia, I 
Hub radius, Lo 
Hub center to tip mass, L 
Tip mass, mt 
Appendage modules of elasticity, E 
Inertia of bending section, I 
Mass density of appendage/length, p 

2128, oz-sMn. 
5.5470, in. 
51.07, in. 
0.15627, oz-s2/in. 
161.6 x10s, oz/in.2 

0.000813, in." 
0.003007, oz-s2/in.2 

T :r 
3     time t [sec]     V 6 

Figure 3.5. Torque-shaped rigid body maneuver 
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ej-6° = pT)[\-r-TQQ2h2'     At = att'     0<Q<*    (393) 

or 

♦  - f I(g/-go) 1* ,3 94) 
tf _ \ umax[(l/4) - (l/2)a + (1/10)0»] / K'   > 

In Eq. (3.94), we see the explicit tradeoff between torque shaping a, target 
maneuver time tf, maneuver angle 6t - 6Q, and maximum angular acceleration 
Umax/I- Obviously, Eq. (3.93) can be inverted for any of these as a function of 
the remaining parameters. If we set a = At/tf = 0, of course, we obtain the 
well known special case result expressing the relationship between the minimum 
time, maneuver angle, inertia, and saturation torque for bang-bang control. It 
is obvious that selection of a controls the sharpness of the switches, with or = 0 
corresponding to bang-bang control (instantaneous switches) and or = 0.25 being 
the smoothest member of this family of torque-shaped maneuvers. Figure 3.6 shows 
the rigid body maneuver time tf vs a, from Eq. (3.94), whereas Figure 3.7 shows the 
residual total energy (at time tf) when the torque-command uref = umax/(ortf,tf,t) 
is applied to simulate the flexible body response [first six modes from a discrete 
assumed mode model (Chapter 4 of [Junkins 1993] of order 20). Notice (Figure 
3.7) that open-loop torque shaping reduces residual vibration at time tf by three 
orders of magnitude (a = 0.1) with only a modest ten percent increase over the 
theoretical minimum time rigid body maneuver (o = 0). The preceding results 
and [Junkins 1991,1993], [Thompson 1989], [Vadali 1990], and [VanderVelde 1990], 
support the intuitively obvious truth that applying judiciously smoothed bang-bang 
controls such as Eq. (3.90) to generate an open-loop maneuver of a flexible body 
can result in near negligible structural vibration for sufficiently slow maneuvers 
(small umax and large a) and neglecting disturbance torques. Of course, unmodeled 
disturbances, control implementation errors, and model errors can be expected to 
negate some of these apparent gains. However, sharper control switches obviously 
increase the probability that higher frequency, less well modeled modes will be 
excited and, therefore, robustness with respect to model errors is generally more 
of an issue for bang-bang control than for smoother torque profiles. Even for 
relatively small departures (slightly smoothed switches) from bang-bang control, 
torque-shaped maneuvers of highly flexible structures typically enjoy a reduction of 
several orders of magnitude in residual vibration. Thus, the overall maneuver time 
(including terminal vibration suppression) can be reduced significantly by torque 
shaping. 

These observations suggest the following strategy: Use an optimized shaped- 
input profile to establish a "trackable" a priori reference rigid (or reduced-order 
flexible) body maneuver; then, based on real-time measurements of the actual flexi- 
ble body's departure from this smooth reference motion, superimpose a perturbation 
feedback control on the reference shaped-torque history that stabilizes the depar- 
ture motion from the reference motion. Also of significance, it is usually desirable 
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Figure 3.6. Rigid body maneuver time vs saturation torque and torque-shaped parameter 
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Figure 3.7. Flexible body open-loop residual vibration energy vs saturation torque and torque- 
shaped parameter 
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to select the reference torque profile parameters (e.g., umax. ct, etc.) to consider the 
available sensor and actuator dynamics and thereby make the commanded torque 
history more nearly achievable physically. 

Pursuing this logic judiciously, attractive tracking-type feedback control laws 
can be established for near-minimum-time, large angle maneuvers. Since bang- 
bang flexible body controllers are sensitive to modeling and control implementation 
errors, we seek control laws that are a smooth torque-shaped compromise between 
the competing objectives of minimizing: (1) maneuver time, (2) residual vibration, 
and (3) sensitivity of closed-loop performance measures with respect to model and 
control implementation errors. 

We adopt a reference rigid body maneuver {0Mf(t)t0i«f(t)i0ref(t) = uref/I} 
satisfying Eqs. (3.90)-(3.94), where I is the undeformed moment of inertia of the 
structure, and we have implicitly selected a, umBX and computed the corresponding 
tf from Eq. (3.94) for specified initial and final angles. For designing a globally 
stable tracking controller, the candidate error energy Lyapunov function can be 
established by considering Eq. (3.86) as 

2U   = aJhub«2 + a2S62 + 4a3| /£ p\s% + xse] *dx 'at j 

•/L„EI(^)2^ + ^[LW + ^|L]2} 
(3.95) 

where 6( ) — ( ) — ( )r and the ( )r quantities are evaluated along the open-loop 
flexible body solution of Eqs. (3.83) with u(t) = u«r(t). Considering Eqs. (3.87) 
and, the time derivative of U is given by 

Ü = (0-0r){   a1u-a1uref + a2(ö-ffr) 1 1 (3.96) 
+4(03 - «i)[(LoSo - Mo) - (LoSo - M0)r]} 

Pursuing the objective of globally stable control, it is clear that setting the 
[ ] term equal to -a4(fl — 6r) leads to the following globally stabilizing [with 
ti = -a4(0 - er)

7] control law: 

u = uref (t) - {gl(0 - er) + g2(0 - 6r) + gsKLnSo - Mo) - (LoSo - M0)r]}  (3.97) 

To enable easy implementations, the following structure for a tracking control law 
can be hypothesized: 

u = u«f(t)—{gi(*-0«r)+ft(o-kf)+g3[(LoSo - Mo) - (L0S0 - M0)rrf]} (3.98) 

where it is easy to show that the root moment for the special case of a reference 
(rigid body) motion is proportional to the angular acceleration: 

(LoSo-Mo)ref = KL3-Lg)/3 + mtL
2]öref(t) (3.99) 
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Obviously, the globally stabilizing control law of Eq. (3.97) is similar to the 
conjectured law (for practical implementation) of Eq. (3.98), the difference being 
that Eq. (3.98) requires presolution for the open-loop rigid body ( )ref quantities, 
whereas, the globally stabilizing control law of Eq. (3.97) requires solution' for 
the open-loop flexible body ( )r quantities from the partial differential equations. 
Since near-minimum-time control implies a certain urgency(l), it is obvious that the 
negligible computational overhead of Eq. (3.98) is more attractive than Eq. (3.97) 
from the point of view of real-time implementations. For the purpose of finding the 
region possessing Lyapunov stability, substitute Eq. (3.98) into Eq. (3.96) 

Ü = -<n(0 - 0r){g2(0 - 6r) + [giA0 + g2A0 + g3A(L0So - Mo)]}       (3.100) 

The Lyapunov stability condition comes from requiring U of Eq. (3.100) to be 
negative; a sufficient condition is 

\6 - 6T\ > ft = —IgiAÖ + g2A9 + gaA(L0So - Mo)| (3.101) 
g2 

If the angular velocity tracking error \9 — GT\ exceeds ft, then U is negative and 
apparently U decreases until encountering the region bounded by Eq. (3.101). It is 
further apparent that the A quantities on the right side of Eq. (3.101) are finite and 
(pre-)computable differences between open-loop flexible ( )r and rigid body ( )rer 
motions. Thus, an upper bound ft can be established directly by precomputation of 
a family of two open-loop motions and the use of a particular set of feedback gains. 
Equation (3.101) thus determines an angular velocity variable boundary defining 
a region T near the ( )ref motion. Note that large motions are globally attracted 
to T because U < 0 everywhere outside of this region. Thus, the control law 
of Eq. (3.98) is almost globally stabilizing, and the only region where asymptotic 
stability is not guaranteed is the small T boundary layer region near the target 
trajectory. Furthermore, the right side of Eq. (3.101) is essentially a measure of 
how nearly the reference target trajectory satisfies the flexible body equations of 
motion; a judicious choice of the shaping parameters defining the target trajectory 
and the associated reference control input can usually be made to result in ft (and 
therefore T) being sufficiently small. 

A bounded-input/bounded-output (BIBO) viewpoint of stability can be used 
to establish some insight into the motion in the T region. Departure motion 
differential equations for 6( ) = ( )—( )r quantities can be obtained by differencing 
Eqs. (3.83), driven by the control law of Eq. (3.98), from the rigid body equations of 
motion, driven by uref. Upon formulating these equations, one can verify that the 
departure motion is governed by a linear, otherwise asymptotically stable, system 
of differential equations, forced by the known A terms that appear in Eq. (3.101). 
The 8( ) motion in the T region is thus bounded because the A forcing terms 
are bounded; the finite maxima of these terms can be found by direct calculation. 
The resulting departure motion is therefore bounded everywhere in the T region, 
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which was already known to have a (typically small) finite dimension ft. Since 
the actual numerical bounds on the A and ft quantities can be made arbitrarily 
small (depending on how nearly the user-defined reference trajectory is made to 
satisfy the open-loop equations of motion), we have a very elegant theoretical'and 
practical situation vis-ä-vis stability of the closed-loop tracking motion. We see 
that the closed-loop motion is globally attracted to the controllably small T region 
near the target trajectory and, considering the motions within T, we have BIBO 
stability. 

In this application, we use a torque-shaped rigid body reference trajectory, which 
is very attractive since the reference maneuver can be calculated in closed form [such 
as the family of Eqs. (3.90)-(3.96)] and since the ensuing tracking law performs 
extremely well. Note that Eqs. (3.90)-(3.96) have a C1 continuous transition to the 
final fixed state: 

{iw(t), MO. <WW, [Mo(t)]„r, [S0(t)W} = {0,6j, 0,0, o}, as t—»tf 

so that, for t > tf, only the three feedback terms of Eqs. (3.98) are contributing 
to the terminal fine-pointing/vibration arrest control. Thus, the controls blend 
continuously from the large-angle tracking law of Eq. (3.98) into a constant gain 
controller (for t > tf) identical to the globally stable fixed point output feedback 
case of Eq. (3.88). Thus we have unqualified global stability for t > tr. 

Simulated Results for Large Angle Maneuvers 

Returning to the family of 40° open-loop maneuvers used to generate the energy 
surface of Figure 3.7, we computed the velocity tracking bound ft for Lyapunov 
stability [as given by Eq. (3.101)] and found the maximum value (ftmax) of /x(t) 
along each trajectory. Figure 3.8 displays this worst-case tracking bound (maximum 
value of ft) surface ftmax(a, umax) region used to generate Figures 3.6 and 3.7. The 
closed-loop tracking error bound has a roughly analogous behavior to the open- 
loop residual vibration energy surface of Figure 3.7. Recall that, outside the region 
bounded by the inequality of Eq. (3.81), we have guaranteed Lyapunov stability, 
using the control law of Eq. (3.98) and the reference rigid-body torque given by 
Eqs. (3.90)-(3.94). From Figure 3.7, it is clear that sufficiently small ftmax and 
large a result in arbitrarily small tracking errors, but the (small o, large umax) 
near-bang reference maneuvers cannot be tracked as precisely. It is easy to see 
how a subset of the candidate (a, umax) designs can be found that satisfy specified 
inequalities on maneuver times, tracking errors, and residual vibration energy by 
direct examination of the surfaces of Figures 3.6-3.9. 

The results obtained from the simulations (and in the actual hardware imple- 
mentations discussed later and in [Junkins 1991,1993]) support the conclusion that 
these surfaces can be used to establish a large region of feasible designs for near- 
minimum-time controls in the space of torque-shaped parameters and control gains. 
Optimization over the set of feasible designs should, in general, include considera- 
tion of the nature of expected disturbances to be rejected. One detailed simulation 
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Figure 3.8. Boundary of the Lyapunoy-stable tracking region vs saturation torque and torque- 
shaped parameter 

0.0       2.0      4.0      6.0      8.0      10.0 
Tune [ sec] 

207 

0.0      Z0      4.0      6.0      8.0      10.0 
Tune [sec] 

Figure 3.9. Open-loop 40° maneuver with random disturbances 
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is now considered to show state and control variable histories along a typical trajec- 
tory of the family of trajectories underlying the above surfaces. In these simulations 
the effects of worst-case disturbance torques are included in order to illustrate the 
effectiveness of controls in the presence of unmodeled effects. For simplicity/only 
the case of 40° rest-to-rest maneuver is considered here, along with setting umax= 
400 oz-in. for all cases. 

For the computational studies, two control laws are considered: namely, the 
output feedback law (control law I) of Eq. (3.88), and the tracking-type feedback 
control law (control law II) of Eq. (3.98). Although control law II could be used 
with an arbitrary reference trajectory, the torque-shaped rigid body trajectories of 
Eqs. (3.90)-(3.94) are specifically selected for investigation. The torque-shaped 
open-loop control history Uref can be precomputed (in a fraction of a second!) 
from Eqs. (3.90)-(3.94) and stored, whereas the instantaneous trajectory variables 
{flref.örer.lLoSoOO-MoMlref} are integrated easily in real time. Note that the 
boundary conditions of Eqs. (3.92) are enforced by using Eq. (3.94) to compute the 
trajectory maneuver time as a function of the maneuver angle, saturation torque, 
and torque-shaped parameter. 

We now discuss the simulation results using control law II, which obviously 
blends into control law I in the end game (for t > tr). In the experimental results in 
the subsequent discussion, maneuvers carried out by both control laws are reported. 
Both open-loop (all gi = 0) and closed-loop time histories of selected state variables 
are shown in Figures 3.9 and 3.10. 

Figures 3.9(a) and (b) show the hub angle and angular velocity for the case of an 
open-loop control and in the presence of substantial impulsive and quasirandom (5 
oz-in., la) disturbance torques. It is evident that the disturbance torque history is 
very significant vis-ä-vis disturbing flexible dynamics in our experimental hardware; 
however, certain nonrandom, nonlinear effects associated with the bearing friction 
cause disturbances that are highly correlated in time and are not well represented by 
the present white-noise model of the disturbance torques. In spite of the substantial 
disturbance torques (Figure 3.9), however, it is evident that the simulations indicate 
that the closed-loop flexible body dynamics, in fact, follow the near-minimum-time 
rigid-body motion closely while effectively suppressing vibration, as shown Figure 
3.10. In addition to the variables graphed in Figures 3.9 and 3.10, we confirmed 
that the energy of the first 10 modes was effectively suppressed. These simulated 
results are very consistent with the experimental results discussed in the following 
section and those presented in [Junkins 1991,1993]. 

Experimental Results 

In all of the experiments in the following discussion, the target final angle is set 
to 40° and umax = 400 oz-in. A detailed description of the hardware is given 
in Appendix I. We overview the system as follows: the configuration (Figure 3.4, 
Table 3.2) has a span of approximately 9 ft and has six natural frequencies below 
20 Hz.   The system is accurately balanced, and the four aluminum appendages' 
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10.0 

4.0       6.0       8.0      10.0 
Urne [sec] 

Figure 3.10. Closed-loop 40° maneuver with random disturbances 

geometric, mass, and stiffness parameters are matched to high precision; the first 
three measured cantilevered natural frequencies of the four individual beams were 
found to be identical tö within 0.05 Hz. 

With this design, the appendages vibrate almost exclusively in the horizontal 
plane; the hub is balanced on a custom-designed needle-jewel bearing that constrains 
the hub to rotate about the vertical axis. Our measurements confirm that negligible 
out-of-plane motion occurs in our experiments, although there is occasional evidence 
of small beam torsional vibrations. Also, to very high accuracy, we can state that our 
experimental results confirmed that only the antisymmetric in-plane modes [implicit 
in the derivation of Eqs. (3.83)] were excited during rest-to-rest maneuvers using 
the hub torque actuator. The bearing stiction/friction torque is significant (~ 20 
oz-in.), but is sufficiently small and predictable to permit meaningful experiments. 
Aerodynamic damping is important only during the most rapid slew maneuvers; 
in most cases, it represents a small perturbation as compared to the larger active 
vibration damping introduced by the feedback controller.  The control torque is 
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achieved by means of a reaction wheel mounted to the shaft of a DC motor [Figure 
3.4(c)], which is, in turn, mounted to the hub. The commanded motor torque 
is achieved by precision current control using power amplifiers, as described in 
Appendix I of [Junkins 1993]. The angular rotation of the hub is measured using a 
Teledyne-Gurley angle encoder, accurate to about 0.01°, whereas the root bending 
moment and shear force estimates are derived from conventional full-bridge strain- 
gauge measurements. The derived estimates of the angular velocity history have 
a variance of approximately l°/s and a time lag of 0.01 s. The noise and phase 
lag in the angular velocity estimates and the strain-gauge-derived root shear force 
and bending moment estimates limit the bandwidth of the closed-loop system to 
the range from approximately 0 to 10 Hz. The errors (noise and phase lag) in the 
derived hub angular velocity estimates represent the mam source of the precision 
and bandwidth constraints of the experimental implementations. The control loops 
were dosed, for all experiments discussed later, at 75 Hz; the angle encoder was also 
sampled at 75 Hz, whereas the strain gauges were sampled an order of magnitude 
faster, and filtered to reduce the effects of sensor noise and higher-frequency modes 
outside the bandwidth of our controller. 

Figure 3.11 shows the experimental system response for a maneuver using control 
law I [the constant gain control law of Eq. (3.88)] with gi = 600 oz-in./rad, g2 = 
800 oz-in./rad/s, and g3 = 0. Even though control law I [Eq. (3.88)] is anticipated 
to be poorly suited for large-angle maneuvers, we nonetheless apply this law to 
carry out 40° maneuvers to provide a reference for the subsequent discussion. Since 
the initial position error is large, the maneuvers start from zero with a large initial 
discontinuity to a large torque. For this gain selection, we see a large hub angle 
overshoot (~10°) and significant structural vibration that was effectively suppressed 
by around 12 s; the control was terminated at 16 s. These results were repeatable; 
however, the residual angle was typically ~ 0.25° because the constant gain gi 
could not be set sufficiently large to overcome terminal bearing stiction without 
causing initial actuator saturation and large overshoots, and a compromise value 
was adopted for the sake of illustration. As is demonstrated in Ref. 5, the overall 
maneuver shape and settling time is sensitive to the gains selected; however, less 
than 10% reductions in the 12 s settling time can be achieved without initially 
saturating the actuator. 

Control law II, on the other hand, leads-to very attractive near-rninimum-time 
maneuvers. One feasible set of gain settings and torque shaped parameters leads 
to the experimental results shown in Figure 3.12. The effect of using a smooth, 
judiciously shaped reference torque history is evident if one compares the output 
and control variable histories in Figure 3.12 with those of Figure 3.11. This 
implementation of control law II produced much smaller overshoot (« 1.5° vs «v 10°) 
and shorter maneuver time (6 s vs 12 s), and greatly reduced the severity of peak 
vibration, compared to control law I. These results, especially when considered 
in conjunction with numerous other cases, are reported in [Junkins 1990] and 
[Thompson 1989], provide convincing evidence that control law II is a versatile 
and highly effective way to incorporate open-loop torque-shaped optimization with 
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Figure 3.11.   Experimental results: a 40° maneuver using control law I (ji = 600, £2 = 800, 
93 = 0.0). 

en route and terminal vibration suppression. The fact that a globally continuous 
control structure is implicit in this approach leads to minimal difficulties in realizing 
robust control laws. 

We encountered several practical difficulties in our experimental work, but 
these difficulties are not central to our control-law design approach. First, the 
root shear force and bending moment approximations obtained using strain-gauge 
measurements resulted in sufficiently noisy and nonlinear measurements that, using 
this feedback (g3 56 0), only marginally improved the controlled response over, for 
example, the results in Figure 3.11. These anomalies resulted, we hypothesize, from 
the nonideal beam-damp effects near the station where the strain measurements 
were being made. Any slight play in the clamp due to large root moment variations 
would manifest itself in spurious strain measurements. Also, deriving the angular 
velocity estimate from the noisy angle-encoder readout was difficult to accomplish 
with high precision and, as a consequence, we constructed a digital filter to process 
the angle encoder data and roll off the frequency content in the rate estimates 
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Figure 3.12. Experimental results: a 40° maneuver using control law II ($i = 3000, gi = 800, 
S3 = 0.0, or = 0.2, xxmMx = 400). 

above 10 Hz. We found this was useful to avoid erroneous, phase-lagged high- 
frequency components of the feedback that disturbed the higher-frequency modes. 
These problems can be essentially eliminated, of course, by investing in a more 
precise sensor to measure angular displacement and/or angular velocity, as well as 
a load cell to measure the root shear and bending moments. Finally, our bearing 
presented us with another set of practical difficulties. Based on analysis of our 
bearing hardware, it became evident that interaction of the structure with the 
bearing accounts for the overwhelming source of disturbance torques. The bearing 
friction/stiction model developed from our analysis [Junkins 1990] has the form 

T^kg = -dsign(ö) - c20 + HOT (3.102) 

where we find ci ~ 20 oz-in. and C2 ~ 0.001 oz-in./rad/s. 
Thus, the first (stiction) term of Eq. (3.102) dominates the bearing torque 

for moderate 0 and is about 5% of the peak commanded torque of 400 oz-in.. 
Although we believe that Eq. (3.102) models the bearing friction well, we found 
that it is difficult to use this model to compensate for bearing friction in real time 
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because angle-encoder noise results in uncertainty in the estimated instants that 6 
switches sign. This difficulty has significant practical consequences. If we modify 
our control to compensate for bearing-disturbance torques (essentially, attempt to 
cancel it) using Eq. (3.102), the commanded discontinuity (at the estimated time 
that 6 changes sign) will not coincide exactly with the actual stiction discontinuity; 
even slightly mistimed compensation torque discontinuities can actually worsen the 
disturbance! Although we experimented with several bearing-torque compensation 
schemes, we ultimately decided simply to consider bearing torque an anticipated 
and well modeled disturbance. Our simulations (such as the results shown in Figure 
3.10) indicated that our control approach could easily tolerate disturbances of this 
magnitude, and our successful experiments in Figures 3.11 and 3.12 and [Junkins 
1990] certainly confirm that our implemented control laws are robust in the presence 
of the actual disturbances from all sources. 

This case study provides a good illustration of the mix of theoretical analysis, 
numerical computation, and engineering judgment required to carry out successful 
applications. The ultimate objective, of course, is to obtain perfect closure between 
theory and experiment. However, it is not realistic to*expect the high degree of 
closure obtained above, when faced with more complicated dynamical systems. Note 
that excellent results were obtained, in spite of modest investments in sensors and 
actuators; however, for systems requiring high precision and wide control bandwith, 
it would be necessary to have corresponding improvements in the precision and 
bandwith of the sensors. In the context of the above numerical and experimental 
results, however, we observe that a large degree of model-error robustness implicit 
in our approach stems from our theoretical verification that the control of Eq. (3.88) 
remains stabilizing for most of the usual variations in modeling assumptions, and we 
used judicious sensor filtering to roll off the effects of the system dynamics outside 
the sensors' bandwidth. In conclusion, the excellent agreement between theory and 
experiment evident in Figures 3.10 and 3.12 represents prototypical (rather than 
usual) results. 

3.7    CONCLUDING REMARKS 

In this chapter, we have summarized the central aspects of Lyapunov stability 
theory with particular emphasis upon the role that it can play in designing stable 
controllers for nonlinear multibody systems. Several elementary analytical and 
numerical examples are provided to illustrate the ideas and to provide some basis 
for extrapolating the practical implications of the methods presented. A more 
extensive example is offered to introduce some ideas on cooperative control, in 
which two or more manipulators are manipulating a payload while cooperating with 
each other to minimize a measure of the associated control and constraint forces 
and moments. The chapter concludes with an example wherein maneuvers are 
designed for a multibody flexible structure and good closure is obtained between 
the analytical, computational, and hardware experimental results. These results 
support the theoretical and practical value of these developments. 
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An Orthogonal Quasi-Coordinate Formulation of 
Dynamical Models for Nonlinear Structural Systems 

Classical Approach   

T, = T- V=I/Mfe t)x + GT (x, t)x + T0 (x, t) - V(x),  A(x, t)* + b{x,t) = Q\ 
  ■■■■■■nun i   jjjjwM 

dt\dx)     dx 
Nsra HS5SEHSSHSS BiraiiHmiintoitMiiiii'i'ii"""1 ■[ —» 

H^riS*H+^+^+ß~Ar*> 
3x     3* 

fr^S^^Y^^^ 
i.i     i   , V ! l-,„Jm.Mmam-Tg|^T»<.3A».rar^ Uiu.iil .„ ,.'Hi, in\*iJi~~u~^mm^~Mmmmmih 

-J 

Orthogonal Quasi-Coordinate Approach: Unconstrained Case 

= ['" d    }c* Cx <=>   x=C 

4(x, t) = C <« 
-l C &[M(x,t)TL=C l/cx C,CTC = I 

""""■""'■ij 
ss^zs 

L = Ivrv+GTCr 1/a,- v+r0-y 

i8a!L--!!LUUmjM{MJ ,»^11.^.^^^ 

Q 

vhere: 

i>2y  —        &2jj  — 

IM W;/0? v + 1/0/ C{flHS}, C = -QC, ö/=± i ^ 
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S    fc;=<5 
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A Low-Dimensioned Example 
Nonlinear Mechanism 

Unconstrained Free Response 
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Some Simulations 
Methodl: statevectoris{v,x}, using orthogonal quasi - coordinate approach 

Method!: statevectoris{x,x], usingM"1« = <*& to solve jbrjc 
MethodS: state vec tor is{x,x}, using LDUdecomp. ofM{x) to solve for x 
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Energy Error History for 3 Numerical Methods 
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Nonlinear Gust Response for The Freewing 
Scorpion Vehicle in Loiter Mode 

U„ = 52ft/s (~36mph)) A 

Vertical Harmonic Gust: V 
A sinCdt Landing/Takoff/Loiter Mode 

Typical Nonlinear 11 Acceleration! I Responses vs time 
A = 5ft/s, CO = 1.5HZ A = 5ft/s, co = 2.5HZ 

Peak Nonlinear Acceleration Response vs A, co 

Wing 
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Flow Chart for Construction of Exactly Solved 
Benchmark Problems Near an Approximate Solution 

GIVEN A DYNAMICAL SYSTEM 
*(0 =f(t,x,x,p), 
where p is the model parameter vector 
x(t0)=x0,    x(t0)=x0i   t0<t<tf 

Hü 
GIVEN A NUMERICAL SOLUTION PROCESS 

{xi, x2, • • •, xn },   where   X( = x(t() 

$£ 
ORTHOGONAL CHEBYSHEV APPROXIMATION 

xb(t) = smooth interpolation of 

{xi,x29—,xn} 

±z. 
INVERSE DYNAMICS 

e{t) = xb(t)-f{t,xb(t),xb(t)9p) 

H> 
BENCHMARK PROBLEM 

The known interpolated solution:  xb (t) 
exactly satisfies the differential eqns 

x(t)=f(t,x,xtp) + e(t), 
with the boundary conditions: 

x(t0)=xb(t0),    x(t0)=xb(t0),   t0<t<tf 
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Example ODE/PPE Hybrid System J 

Exact Hybrid System Model: 

JQ+ fLp(x + r)[y+(x + r)Q]dx + m(L + r)[(L + r)Q+y] 

+ j[e + y'] _ JLf(x) (x + r)dx + (L + r)ftip +utip + u(t) = 0 

p[y+ (x + r)Q] +EIy""-f(t,x) = 0 
with the boundary conditions: 

EIy'"(t,L) -m[(L + r)Q +y(t,L)]+ftiP(t) = 0 

EIy"(t,L) + J[8 +y'(t,L)] - utip(t) = 0 

Approximate FEM System Model: 

rJ+Mee MQv]l'Q\   rO   0 H6l_ 
rl r+L 1 
0 0 0 

• • • • • • • • • 
0 1 0 

LO    0 0J 
[Utip] 

[Lf(t,x)(x + r)dx 
Jo 
Jhf(t>x)^1\x)dx + ^hf(t,x)^\x)dx 

[hf(t,x)y{
4
1)(x)dx+ (2hf(t,x)^\x)dx 

JO Jh 

J(n-2)h J(n-l)h 

r fi.ux)^\x)dx 

r f(t,X)^\x)dx 
U(n-l)h 

= 0 

Benchmark System Model: Given interpolated {>(*,*), 6(f)}, find 
j {Sf(t,x), 8w(0,8/ft> (0, Surf, } to exactly satisfy the hybrid system of odes/pdes: 

|   jQ + JLp(x + r)[y+(x+r)Q]dx + m(L + r)[(L + r)Q + y]-J^ 

+ J[Q + y/] + (L + r){ftip + ^ftiP} + {utip + ^utip} + {u + ^u} = 0 =» jfcp* 6K(0 

p[3/+(x+r)e]+£//,,,-{/'ax) + 8/a^} = 0 => «tepl: S/(*,*) 
wfr/i ^e boundary conditions: 
£//"(*, L) -m[(L + r)9 +f(t,L)] + {ftip(t) + 8/^(0} = 0 

EIy"{t,L) +J[Q +y\t,L)] - {utip{t) + &i#(0} = 0 

=> step 2: 8/,jp(0 

=> step 3: §utip(t) 
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